About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Artificial Intelligence Overtakes Humans in Predicting Heart Attack, Death

by Hannah Joy on May 13, 2019 at 5:45 PM
Artificial Intelligence Overtakes Humans in Predicting Heart Attack, Death

Artificial Intelligence (AI) or machine learning is overtaking humans in predicting those individuals who are at risk of heart attack and death, reveals a new study.

The International Conference on Nuclear Cardiology and Cardiac CT (ICNC) is co-organised by the American Society of Nuclear Cardiology (ASNC), the European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology (ESC), and the European Association of Nuclear Medicine (EANM).

Advertisement


By repeatedly analyzing 85 variables in 950 patients with known six-year outcomes, an algorithm "learned" how imaging data interacts. It then identified patterns correlating the variables to death and heart attack with more than 90% accuracy.

Machine learning, the modern bedrock of artificial intelligence (AI), is used every day. Google's search engine, face recognition on smartphones, self-driving cars, Netflix and Spotify recommendation systems all use machine learning algorithms to adapt to the individual user.
Advertisement

Study author Dr Luis Eduardo Juarez-Orozco, of the Turku PET Centre, Finland, said: "These advances are far beyond what has been done in medicine, where we need to be cautious about how we evaluate risk and outcomes. We have the data but we are not using it to its full potential yet."

Doctors use risk scores to make treatment decisions. But these scores are based on just a handful of variables and often have modest accuracy in individual patients. Through repetition and adjustment, machine learning can exploit large amounts of data and identify complex patterns that may not be evident to humans.

Dr Juarez-Orozco explained: "Humans have a very hard time thinking further than three dimensions (a cube) or four dimensions (a cube through time). The moment we jump into the fifth dimension we're lost. Our study shows that very high dimensional patterns are more useful than single dimensional patterns to predict outcomes in individuals and for that we need machine learning."

The study enrolled 950 patients with chest pain who underwent the center's usual protocol to look for coronary artery disease. A coronary computed tomography angiography (CCTA) scan yielded 58 pieces of data on presence of coronary plaque, vessel narrowing, and calcification. Those with scans suggestive of disease underwent a positron emission tomography (PET) scan which produced 17 variables on blood flow. Ten clinical variables were obtained from medical records including sex, age, smoking and diabetes.

During an average six-year follow-up there were 24 heart attacks and 49 deaths from any cause. The 85 variables were entered into a machine learning algorithm called LogitBoost, which analysed them over and over again until it found the best structure to predict who had a heart attack or died.

Dr Juarez-Orozco said: "The algorithm progressively learns from the data and after numerous rounds of analyses, it figures out the high dimensional patterns that should be used to efficiently identify patients who have the event. The result is a score of individual risk."

The predictive performance using the ten clinical variables alone (similar to current clinical practice) was modest, with an area under the curve (AUC) of 0.65 (where 1.0 is a perfect test and 0.5 is a random result). When PET data were added, AUC increased to 0.69. The predictive performance increased significantly (p=0.005) when CCTA data were added to clinical and PET data, giving an AUC 0.82 and more than 90% accuracy.

Dr Juarez-Orozco said: "Doctors already collect a lot of information about patients - for example those with chest pain. We found that machine learning can integrate these data and accurately predict individual risk. This should allow us to personalize treatment and ultimately lead to better outcomes for patients." That's the main message of a study presented at ICNC 2019.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Heart Disease News

Global Heart Failure Cases Projected to Exceed 16 Million by 2032
While heart failure can affect both genders, it is more commonly observed in men and is more prevalent in the elderly population.
Traumatic Brain Injury - Unacknowledged Risk Factor in Cardiovascular Diseases
Traumatic brain injury survivors (military, sports personnel) are at higher risk of cardiovascular and cognitive dysfunction in relative to general population.
Severe Psoriasis Increases Risk of Heart Diseases
Severe psoriasis patients are more susceptible to coronary microvascular dysfunction, which raises cardiovascular risk.
Snoring Treatment Helps Reduce Death Rates Due to Heart Diseases
CPAP used for treating loud snoring reduces the risk of heart disease and is also a favorable alternative to weight-loss drugs in treating clogged arteries.
High Emulsifier E Numbers Intake Linked to Cardiovascular Risk
Consuming significant quantities of trisodium phosphate (E339) was likewise linked to a higher risk of developing coronary heart disease.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Artificial Intelligence Overtakes Humans in Predicting Heart Attack, Death Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests