Mechanism Inducing Self-killing of Cancer Cells Identified

by Colleen Fleiss on  August 30, 2019 at 7:20 AM Cancer News
RSS Email Print This Page Comment bookmark
Font : A-A+

A novel mechanism which induces the self-killing of cancer cells by perturbing ion homeostasis has been described by researchers. A research team from the Department of Biochemical Engineering has developed helical polypeptide potassium ionophores that lead to the onset of programmed cell death. The ionophores increase the active oxygen concentration to stress endoplasmic reticulum to the point of cellular death.
Mechanism Inducing Self-killing of Cancer Cells Identified
Mechanism Inducing Self-killing of Cancer Cells Identified

The electrochemical gradient between extracellular and intracellular conditions plays an important role in cell growth and metabolism. When a cell's ion homeostasis is disturbed, critical functions accelerating the activation of apoptosis are inhibited in the cell.

Show Full Article


Although ionophores have been intensively used as an ion homeostasis disturber, the mechanisms of cell death have been unclear and the bio-applicability has been limited. In the study featured at Advanced Science, the team presented an alpha helical peptide-based anticancer agent that is capable of transporting potassium ions with water solubility. The cationic, hydrophilic, and potassium ionic groups were combined at the end of the peptide side chain to provide both ion transport and hydrophilic properties.

These peptide-based ionophores reduce the intracellular potassium concentration and at the same time increase the intracellular calcium concentration. Increased intracellular calcium concentrations produce intracellular reactive oxygen species, causing endoplasmic reticulum stress, and ultimately leading to apoptosis.

Anticancer effects were evaluated using tumor-bearing mice to confirm the therapeutic effect, even in animal models. It was found that tumor growth was strongly inhibited by endoplasmic stress-mediated apoptosis.

Professor Yeu-Chun Kim said he expects this new mechanism to be widely used as a new chemotherapeutic strategy. This research was funded by the National Research Foundation.

Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions

Recommended Reading

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Premium Membership Benefits

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive