About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Implantable Soft Robotic Devices for Heart Failure
Advertisement

Implantable Soft Robotic Devices for Heart Failure

Font : A-A+

Highlights:
  • Implantable robotic devices may offer new therapy for heart failure.
  • These devices help recover blood flow and pressure.
  • These devices also have artificial muscles to perform motions.

Soft robotic actuators, which are pneumatic artificial muscles designed and programmed to perform lifelike motions, have recently emerged as an attractive alternative to more rigid components that have conventionally been used in biomedical devices. A research team at the Boston Children's Hospital team revealed a proof-of-concept soft robotic sleeve that could support the function of a failing heart.

Despite this promising innovation, the team recognized that many pediatric heart patients have more one-sided heart conditions. These patients are not experiencing failure of the entire heart -- instead, congenital conditions have caused disease in either the heart's right or left ventricle, but not both.

Advertisement

Implantable Soft Robotic Devices for Heart Failure

"We set out to develop new technology that would help one diseased ventricle, when the patient is in isolated left or right heart failure, pull blood into the chamber and then effectively pump it into the circulatory system," says Nikolay Vasilyev, MD, a researcher in cardiac surgery at Boston Children's.

The heart of the challenge - pumping blood efficiently
Although other existing mechanical pumps can help propel blood through the heart, they are designed so that blood must run through the pump itself, exposing blood to its unnatural surface.
Advertisement

"Running blood through a pump always requires a patient to be placed, permanently, on anticoagulant medication to prevent blood clotting," Vasilyev says, who is a co-senior author on the paper. "It can be very difficult to keep the right balance of medication, especially in pediatric patients, who are therefore at risk of excessive bleeding or dangerous clotting."

So, using external actuators to help squeeze blood through the heart's own chamber, the team has designed a system that could theoretically work with minimal use of anticoagulants.

"We've combined rigid bracing with soft robotic actuators to gently but sturdily help a diseased heart chamber pump blood effectively," Vasilyev says.

The rigid brace component is deployed via a needle into the heart's intraventricular septum, the wall of tissue between the heart's chambers, to prevent the septum from shifting under the pressure of the artificial "muscle" of the soft actuator.

"With the use of classic left ventricular assist devices, there are patients who experience a septum shift towards the right side and subsequent ballooning of the right ventricle, which can cause secondary right heart failure," Vasilyev says. "Here, the rigid brace keeps the septum in its original position, protecting the healthy right side of the heart from the mechanical load of the left ventricular assistance."

In contrast, existing ventricular assist devices (VAD) don't involve the septum at all.

Tailoring the concept for future translation
Altogether, the system involves a septal anchor, a bracing bar and sealing sleeve that pass through the ventricle wall, and a frame embedded with soft actuators that is mounted around the ventricle. The researchers designed two distinct versions of the system for the right and left ventricle.

In animal studies, the soft robotic system contributed significantly to the diseased ventricle's ability to eject blood. The researchers speculate that the system's effectiveness is due in part to its integration with the septum, which plays a key role in the heart's ability to pump blood.

The system also made significant improvement in its ability to draw blood into the ventricles, which is just as important as the heart's ability to pump it out.

"As the actuators relax, specially-designed elastic bands help return the heart's wall to its original position, filling the chamber sufficiently with blood," Vasilyev says.

Based on these initial proof-of-concept results, Vasilyev and his team are working on key design modifications that can bring this system closer to use in humans, such as portability and miniaturization of the components. They also need to do longer tests in animals to see how the system impacts the heart over prolonged periods of time.

References :
  1. Christopher J. Payne, Isaac Wamala et al. Soft Robotic Ventricular Assist Device with Septal Bracing for Therapy of Heart Failure, Science RoboticsDOI: 10.1126/scirobotics.aan6736


Source: Eurekalert

Citations   close

Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
World Disability Day 2022 - The Role of Innovative Transformation
Diet and Oral Health: The Sugary Connection May Become Sour
World AIDS Day 2022 - Equalize!
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Congenital Heart Disease Heart Healthy Heart Pulmonary Arterial Hypertension Statins Mitral Valve Prolapse Aortic Valve Stenosis Infective Endocarditis Cough Symptom Evaluation Pericarditis 

Most Popular on Medindia

Color Blindness Calculator Sinopril (2mg) (Lacidipine) Drug Side Effects Calculator Accident and Trauma Care Turmeric Powder - Health Benefits, Uses & Side Effects Hearing Loss Calculator Blood Donation - Recipients Find a Doctor Drug Interaction Checker Find a Hospital
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Implantable Soft Robotic Devices for Heart Failure Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests