Medindia LOGIN REGISTER
Medindia

New Network to Detect Human Sounds Discovered

by Sheela Philomena on Nov 1 2014 4:35 PM

Researchers have tapped into human-created vibrational ‘soundscapes,’ a mostly hidden source of data, to count Aircraft, monitor traffic and follow other human sounds.

 New Network to Detect Human Sounds Discovered
Researchers have tapped into human-created vibrational ‘soundscapes,’ a mostly hidden source of data, to count Aircraft, monitor traffic and follow other human sounds.
Scripps Institution of Oceanography researchers Nima Riahi, a postdoctoral fellow, and Peter Gerstoft, a geophysicist, will describe their efforts to tap into an urban seismic network to monitor the traffic of trains, planes, automobiles and other modes of human transport. They will present the work this week at the 168th Meeting of the Acoustical Society of America (ASA), which will be held October 27-31, 2014, at the Indianapolis Marriott Downtown Hotel.

Journalists are invited to remotely access a live-streamed video webcast about this research and several other topics of newsworthy interest. The webcast will take place at 3:00 p.m. ET on Wednesday, October 29 and will be archived for one year afterward. For more information, contact: [email protected]

Traffic in urban areas generates both acoustic and seismic “noise.” While seismic noise typically isn’t perceptible by humans, it could prove to be an interesting data source for traffic information systems in the near future.

“Earlier this year an industrial partner offered us access to a large vibration dataset acquired over the city of Long Beach, Calif., so we seized the opportunity,” explained Riahi.

This particular dataset consists of a 5,300-geophone network—deployed as part of a hydrocarbon industry survey—covering an area of more than 70 km2. Geophone devices are commonly used to record energy waves reflected by the subsurface geology as a way of mapping out geologic structures or track earthquakes.

“By recording vibrations via geophones spaced roughly every 100 meters (300 feet), we were able to look into activity in Long Beach with a resolution below a typical city block,” said Riahi.

Advertisement
This begs the question: What urban processes can the space and time structure of vibrational intensity reveal?

Much to their surprise, Riahi and Gerstoft discovered that “by using mostly standard signal processing, we can follow a metro schedule, count aircraft and their acceleration on a runway, and even see larger vehicles on a 10-lane highway.” More refined techniques and algorithms may well uncover many other types of manmade signals within the Earth.

Advertisement
These findings indicate that urban vibrations can serve as a new data source to observe cities. “Traffic monitoring tasks are an important and obvious application, but other uses may be involved in urban area characterization in which the type and schedule of activities can be visualized, so that it’s possible to vibrationally identify industrial, residential or office zones,” Riahi added.



Source-Newswise


Advertisement