Repeating RNA sequences in Huntington’s disease attack the brain cells and are found to be toxic for the cancer cells to survive.
Highlights
- Patients with Huntington’s disease are 80% less likely to get cancer.
- An overabundance of a certain type of repeating RNA sequences in one gene, huntingtin proves toxic for cancer cells.
- The repeating RNA sequences attack genes in the cell and cancer cells appear to be much more susceptible.
Huntington’s is caused by an overabundance of a certain type of repeating RNA sequences in one gene, huntingtin, present in every cell. The defect that causes the disease also is highly toxic to tumor cells.
These repeating sequences in the form of so-called small interfering RNAs attack genes in the cell that are critical for survival. Nerve cells in the brain are vulnerable to this form of cell death, however, cancer cells appear to be much more susceptible.
"This molecule is a super assassin against all tumor cells," said senior author Marcus Peter, the Tom D. Spies Professor of Cancer Metabolism at Northwestern University Feinberg School of Medicine. "We’ve never seen anything this powerful."
Peter collaborated with Dr. Shad Thaxton, associate professor of urology at Feinberg, to deliver the molecule in nanoparticles to mice with human ovarian cancer. The treatment significantly reduced the tumor growth with no toxicity to the mice, Peter said. Importantly, the tumors did not develop resistance to this form of cancer treatment.
Peter and Thaxton are now refining the delivery method to increase its efficacy in reaching the tumor. The other challenge for the scientists is figuring out how to stabilize the nanoparticles, so they can be stored.
Huntingtin Gene Kills Cancer Cells
"I thought maybe there is a situation where this kill switch is overactive in certain people, and where it could cause loss of tissues," Murmann said. "These patients would not only have a disease with an RNA component, but they also had to have less cancer."
She started searching for diseases that have a lower rate of cancer and had a suspected contribution of RNA to disease pathology. Huntington’s was the most prominent.
When she looked at the repeating sequences in huntingtin, the gene that causes the disease, she saw a similar composition to the earlier kill switch Peter had found. Both were rich in the C and G nucleotides (molecules that form the building blocks of DNA and RNA).
"Toxicity goes together with C and G richness," Murmann said. "Those similarities triggered our curiosity."
In the case of people who have Huntington’s, the gene huntingtin has too many repeating sequences of the triplet sequence CAG. The longer the repeating sequence, the earlier they will develop the disease.
"We believe a short-term treatment cancer therapy for a few weeks might be possible, where we could treat a patient to kill the cancer cells without causing the neurological issues that Huntington’s patients suffer from," Peter said.
Huntington’s disease
Huntington’s disease deteriorates a person’s physical and mental abilities during their prime working years and has no cure.
Huntington’s patients have a lifetime exposure to these toxic RNA sequences, but generally don’t develop symptoms of the disease until age 40, he noted.
Every child of a parent with Huntington’s has 50/50 chance of carrying the faulty gene. Today, there are approximately 30,000 symptomatic Americans and more than 200,000 at-risk of inheriting the disease.
Source-Medindia