About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Efficient Approach for Tracking Physical Activity From Wearable Health Devices

Font : A-A+

Highlights
  • The challenges involved for wearable health technologies are how much data to process and how to store the information.
  • The researchers recruited graduate students for five different activities: golfing, biking, walking, waving and sitting.
  • The resulting data was evaluated using taus of zero seconds, two seconds, four seconds, and so on, all the way up to 40 seconds.
  • Using a tau of six seconds, researchers could identify five relevant activities.

Efficient Approach for Tracking Physical Activity From Wearable Health Devices

An energy-efficient technique for accurately tracking a user's physical activity based on data from wearable devices, has been developed by researchers from North Carolina State University.

One goal for wearable health technologies is to identify and track physical activity by the wearer.

Advertisement


Accomplishing this goal requires a trade-off between accuracy and the power needed for data analysis and storage, which is a challenge, given the limited power available for wearable devices.

"Tracking physical activity is important because it is a key component for placing other health data in context," says Edgar Lobaton, an assistant professor of electrical and computer engineering at NC State and senior author of a paper on the new work.
Advertisement

A spike in heart rate is normal when exercising, but can be an indicator of health problems in other circumstances.

Devising technology for monitoring physical activity involves addressing two challenges.
  • First, the program needs to know how much data to process when assessing activity. For example, looking at all of the data collected over a 10-second increment, or tau, takes twice as much computing power as evaluating all of the data over a five-second tau.
  • The second challenge is how to store that information.
One solution to this is to lump similar activity profiles together under one heading.

For example, certain data signatures may all be grouped together under "running," while others may be lumped together as "walking."

The challenge here is to find a formula that allows the program to identify meaningful profiles (e.g., running, walking or sitting).

If the formula is too general, the profiles are so broad as to be meaningless; and if the formula is too specific, you get so many activity profiles that it is difficult to store all of the relevant data.

How it was done-

To explore these challenges, the research team had graduate students come into a motion-capture lab and perform five different activities: golfing, biking, walking, waving and sitting.

The researchers then evaluated the resulting data using taus of zero seconds (i.e., one data point), two seconds, four seconds, and so on, all the way up to 40 seconds.

The researchers then experimented with different parameters for classifying activity data into specific profiles.

"Based on this specific set of experimental data, we found that we could accurately identify the five relevant activities using a tau of six seconds," Lobaton says. "This means we could identify activities and store related data efficiently.

"This is a proof-of-concept study, and we're in the process of determining how well this approach would work using more real-world data," Lobaton says.

This approach will provide the best opportunity to track and record physical activity data in a practical way that provides meaningful information to users of wearable health monitoring devices.

The paper, "Hierarchical Activity Clustering Analysis for Robust Graphical Structure Recovery," will be presented at the 2016 IEEE Global Conference on Signal and Information Processing, being held Dec. 7-9 in Washington, D.C.

Lead author of the paper is Namita Lokare, a Ph.D. student at NC State. The co-authors are Daniel Benavides and Sahil Juneja, of NC State.

The research was done with support from the National Science Foundation's Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST) under grant EEC-1160483.

The goal of the ASSIST Center, which is based at NC State, is to make wearable technologies that are powered by a user's movement or body heat and can be used for long-term health monitoring.



Source: Medindia

Citations   close

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Dr. Meenakshy Varier. (2016, November 16). Efficient Approach for Tracking Physical Activity From Wearable Health Devices. Medindia. Retrieved on Sep 25, 2022 from https://www.medindia.net/news/healthwatch/efficient-approach-for-tracking-physical-activity-from-wearable-health-devices-165316-1.htm.

  • MLA

    Dr. Meenakshy Varier. "Efficient Approach for Tracking Physical Activity From Wearable Health Devices". Medindia. Sep 25, 2022. <https://www.medindia.net/news/healthwatch/efficient-approach-for-tracking-physical-activity-from-wearable-health-devices-165316-1.htm>.

  • Chicago

    Dr. Meenakshy Varier. "Efficient Approach for Tracking Physical Activity From Wearable Health Devices". Medindia. https://www.medindia.net/news/healthwatch/efficient-approach-for-tracking-physical-activity-from-wearable-health-devices-165316-1.htm. (accessed Sep 25, 2022).

  • Harvard

    Dr. Meenakshy Varier. 2021. Efficient Approach for Tracking Physical Activity From Wearable Health Devices. Medindia, viewed Sep 25, 2022, https://www.medindia.net/news/healthwatch/efficient-approach-for-tracking-physical-activity-from-wearable-health-devices-165316-1.htm.

Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
What's New on Medindia
Test Your Knowledge About Chromosomes?
Eating During Sunlight Hours Minimizes Mood Vulnerabilities
Know More About the Digestive System
View all
Recommended Reading
News Archive
Date
Category
Advertisement
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Top Health Tips to Overcome Tiredness Diet and Nutrition for Healthy Weight Loss Mantra to Prevent Childhood Obesity – Vigorous Physical Activity Malnutrition to Obesity - The Big Leap Health Insurance - India Workout Pain 

Most Popular on Medindia

Sinopril (2mg) (Lacidipine) A-Z Drug Brands in India Sanatogen Drug - Food Interactions Pregnancy Confirmation Calculator Loram (2 mg) (Lorazepam) Noscaphene (Noscapine) How to Reduce School Bag Weight - Simple Tips Nutam (400mg) (Piracetam) Indian Medical Journals
This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
×

Efficient Approach for Tracking Physical Activity From Wearable Health Devices Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests