Medindia LOGIN REGISTER
Medindia

Device That Models Human Kidney Function Developed

by Dr. Meenakshy Varier on Feb 13 2017 12:17 PM
Listen to this article
0:00/0:00

Highlights

  • The new model kidney incorporates a porous growth substrate, physiological fluid flow, and the passive filtration of the glomerulus.
  • It will also serve as a platform to study drug interactions with tissues and cells.
  • In future, this model can be used as an animal alternative during pre-clinical testing.
A new device to model the human kidney proximal tubule and glomerulus has been developed. This will serve as a unique platform to understand the interactions between drugs and cells or tissues.
The model kidney was developed by Assistant Professor Gretchen Mahler and Binghamton biomedical engineering alumna Courtney Sakolish PhD from Binghamton University State University of New York.

The reusable, multi-layered and microfluidic device incorporates a porous growth substrate, with a physiological fluid flow, and the passive filtration of the capillaries around the end of a kidney, called the glomerulus, where waste is filtered from blood.

"This is a unique platform to study interactions between drugs and cells or tissues, specifically in the kidney, where current models were lacking," said Sakolish. "These platforms will, hopefully, in the future, be used as an animal alternative during pre-clinical testing to more accurately direct these studies toward successful results in humans."

"This is tissue engineering, but not for the purpose or replacing an organ or tissue in a person," said Mahler.

"The idea is that we can recreate the major organ functions in a simplified way for use as a drug screening tool. Finding new drugs is very hard, expensive and inefficient. We hope that by using human cells in a physiological environment we can help to direct resources toward the most promising new drug candidates and determine that other new drug candidates will fail, faster." Mahler added.

Cells grown in the device exhibit more natural behaviors compared to when grown in traditional culturing methods, and the filtration by the glomerulus is necessary for healthy cell function.

Advertisement
"We found that the more complex, dynamic culturing conditions (like those used in this project) are necessary to accurately predict renal drug toxicity in human systems," said Sakolish.

"When we compared physiological renal function and drug toxicity in traditional static culturing against our new model, we found significant differences in the ways that cells behaved. In our platform, cells looked and acted like those that you would find in the body, showing more sensitive responses to drugs than traditional static culturing." Sakolish added.

Advertisement
While previous models of microfluidic proximal tubule have been developed, this is the first to offer glomerular filtration.

"This type of device uses human cells in a dynamic, more physiologic environment, potentially making it better at predicting the body's response to drugs than animals (animal effectiveness studies often don't translate to humans) or static cell cultures, which are the most commonly used preclinical screening tools," said Mahler.

The paper titled "A novel microfluidic device to model the human proximal tubule and glomerulus," is published in RSC Advances.

Reference

  1. Courtney M. Sakolish et al. A novel microfluidic device to model the human proximal tubule and glomerulus. RSC Advances; (2017) DOI: 10.1039/C6RA25641D


Source-Medindia


Advertisement