- Computer scientists from Stanford University built an artificially intelligent algorithm that uses deep learning to detect early-stage skin cancers.
- A database of almost 130,000 images of skin lesions representing more than 2,000 different diseases were gathered.
- The artificial intelligence was capable of classifying skin cancer with a level of competence comparable to dermatologists.

Skin cancer is diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination.
Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions.
A new research project at Stanford University is promising to bring things up to a professional grade of diagnosis, through a deep learning algorithm that can detect potential cancers with the same accuracy as dermatologists in early tests.
"There's no huge dataset of skin cancer that we can just train our algorithms on, so we had to make our own," said Brett Kuprel, co-lead author of the paper. "We gathered images from the internet and worked with the medical school to create a nice taxonomy out of data that was very messy - the labels alone were in several languages, including German, Arabic and Latin."
The team then had 21 trained dermatologists diagnose cancerous and non-cancerous lesions from over 370 images. It then put its new algorithm to the test, tasking it with identifying the most common skin cancers, and then separately identifying the deadliest of skin cancers: malignant melanomas.
"We realized it was feasible, not just to do something well, but as well as a human dermatologist," said Sebastian Thrun, an adjunct professor in the Stanford Artificial Intelligence Laboratory. "
The authors speculated that with the explosive growth of smartphones, everyday people could be given tools to spot and identify skin issues early. Smartphones "can therefore potentially provide low-cost universal access to vital diagnostic care".
Reference
- Andre Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature (2017) doi:10.1038/nature21056.
Source: Medindia
Citations
Please use one of the following formats to cite this article in your essay, paper or report:
-
APA
Julia Samuel. (2017, January 27). Artificial Intelligence Capable of Identifying Skin Cancer. Medindia. Retrieved on Aug 09, 2022 from https://www.medindia.net/news/healthwatch/artificial-intelligence-capable-of-identifying-skin-cancer-167307-1.htm.
-
MLA
Julia Samuel. "Artificial Intelligence Capable of Identifying Skin Cancer". Medindia. Aug 09, 2022. <https://www.medindia.net/news/healthwatch/artificial-intelligence-capable-of-identifying-skin-cancer-167307-1.htm>.
Chicago
Julia Samuel. "Artificial Intelligence Capable of Identifying Skin Cancer". Medindia. https://www.medindia.net/news/healthwatch/artificial-intelligence-capable-of-identifying-skin-cancer-167307-1.htm. (accessed Aug 09, 2022).
Harvard
Julia Samuel. 2021. Artificial Intelligence Capable of Identifying Skin Cancer. Medindia, viewed Aug 09, 2022, https://www.medindia.net/news/healthwatch/artificial-intelligence-capable-of-identifying-skin-cancer-167307-1.htm.