About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

3-D View of Plant Cells, Without Glasses

by Himabindu Venkatakrishnan on June 10, 2014 at 6:43 PM
Font : A-A+

 3-D View of Plant Cells, Without Glasses

The FIB-SEM technology allows 3D viewing of the plant parts like seed, leaf and stem, using the property of shorter wavelengths of electrons than visible light.

"The 3D visualization of subcellular structures only seen in 2D views was very satisfying," says Cahoon. "Some were just as you would imagine but others were surprisingly organized—for example, amorphous aggregates in the petal cell vacuoles that had been dismissed in previous electron microscopy studies as artifacts or uninteresting. The 3D view of these structures revealed a regular pattern appearing in almost every petal mesophyll cell used in our study. When molecules are organized like this, it suggests function and poses new questions."

Advertisement

Electron microscopes can produce images at a much higher magnification and resolution than optical light microscopes because electrons have shorter wavelengths than visible light. The ion beam is able to penetrate the tissue sample and slice off thin sections at a precision much greater than any form of mechanical milling. Combining these two technologies offers unique images unattainable by any other method.

Unfortunately, all good things tend to have their drawbacks and FIB-SEM is no exception. It is a time-intensive process that requires an expensive specialized instrument. Tissue samples must undergo highly specific fixation procedures to stabilize them for imaging in the electron microscope, and non-conductive biological cells require a conductive coating, such as platinum or a gold alloy.
Advertisement

For the research team at MTSU, the time-consuming procedures and expensive equipment are well worth the results. "We have new specific questions to address that arose from the expanded view of the internal structures. In addition, now that we know how to use this technology, we have begun to expand the repertoire of photosynthetic organisms to, at least initially, explore their cellular architecture just to see where it takes us."

The new FIB-SEM methods developed for seed, leaf, stem, root, and petal cell types will help expand the toolset available to plant anatomists for understanding the nature of organelles, cells, and plant development. A unique view of plant cell interiors could reveal never-before-seen aspects of the architecture and distribution of organelles. This work is just one example of how technological advances in one field of science, in this case, materials science, can open new doors for researchers in other fields.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Health Benefits of Giloy
Breast Cancer Awareness Month 2021 - It's time to RISE
First-Ever Successful Pig-To-Human Kidney Transplantation
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.


Recommended Reading
Scientists Engineer Plant Cells To Produce Potential Cancer Drugs
American scientists have successfully engineered plant cells to churn out several chemical ......
Researchers Try To Speed Up Technology With The Help of New Nanomaterials
A new two-dimensional material was produced by researchers who believe this could revolutionize the ...
Eco Friendly' Generation Of Electronics is Here: Spintronics
Researchers at Ohio State University have demonstrated the first device that utilizes the spin of .....

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use