A new study reveals that a transcription factor, known as STAT3, could help prevent neurodegeneration if it remains in the axon of nerve cells.

To discover how CNTF works, Sendtner and his colleagues studied mice with a mutation that mimics ALS. The researchers found that CNTF not only prevented shrinkage of the rodents' motor neurons, it also reduced the number of swellings along the axon that are markers of degeneration. It is known that CNTF indirectly turns on the transcription factor STAT3, so the researchers wanted to determine if STAT3 is behind CNTF's protective powers. They tested whether CNTF helps motor neurons that lack STAT3 and discovered that, in the mutant mice, axons lacking STAT3 were half as long as those from a control group after CNTF treatment
Once it has been activated, STAT3 typically travels to the nucleus of the neuron to switch on genes. But the researchers were surprised to find that most of the axonal STAT3 did not move to the nucleus and instead had a local effect in the axon. Specifically, the team found that activated STAT3 inhibited stathmin, a protein that normally destabilizes microtubules. When the team removed stathmin in motor neurons from the mutant mice, the axons grew at the same rate as axons from normal mice but didn't elongate any faster after doses of CNTF. These results indicate that CNTF mainly stimulates axon growth by thwarting stathmin and suggests that drugs to block stathmin could slow neuron breakdown in patients with neurodegenerative diseases.
Source-Eurekalert
MEDINDIA



Email






