About My Health Careers Internship MedBlogs Contact us

Sparkling Discovery: Tiny Diamonds Can Enhance Medical Imaging

by Adeline Dorcas on May 19, 2018 at 4:59 PM
Font : A-A+

Sparkling Discovery: Tiny Diamonds Can Enhance Medical Imaging

New technique using diamonds can provide a very-low-cost alternative to multimillion-dollar medical imaging and drug-discovery devices, reports a new study.

An international team led by scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley discovered how to exploit defects in nanoscale and microscale diamonds and potentially enhance the sensitivity of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) systems while eliminating the need for their costly and bulky superconducting magnets.


"This has been a longstanding unsolved problem in our field, and we were able to find a way to overcome it and to show that the solution is very simple," said Ashok Ajoy, a postdoctoral researcher in the Materials Sciences Division at Berkeley Lab, and the Department of Chemistry at UC Berkeley, who served as the lead author of the study. "No one has ever done this before. The mechanism that we discovered is completely new."

MRI machines are employed to locate cancerous tumors and aid in the development of treatment plans, while NMR machines are used to examine the atomic-scale structure and chemistry of drug compounds and other molecules.

The findings of the study are published in the Science Advances journal.

The new technique could lead to the direct use of these tiny diamonds for rapid and enhanced biological imaging. Researchers will also seek to transfer this special tuning, known as spin polarization, to a harmless fluid such as water, and to inject the fluid into a patient for faster MRI scans. The high surface area of the tiny particles is key in this effort, researchers noted.

Enhancing this spin polarization in the electrons of the diamonds' atoms can be likened to aligning some compass needles pointing in many different directions to the same direction. These "hyperpolarized" spins could provide a sharper contrast for imaging than conventional superconducting magnets.

"This important discovery in the hyperpolarization of nano- and microscale diamonds has enormous scientific and commercial implications," Ajoy said, as some of the most advanced MRI and NMR machines can be incredibly expensive and out of reach for some hospitals and research institutions.

"This could help expand the market for MRI and NMR," he said, and could also potentially shrink the devices from room-sized to benchtop-sized, which "has been the dream from the start." Ajoy is a member of the Alex Pines research lab at UC Berkeley - Pines is a senior faculty scientist in Berkeley Lab's Materials Sciences Division, and a pioneer in the development of NMR as a research tool.

Scientists had struggled to overcome a problem in properly orienting the diamonds to achieve a more uniform spin polarization - and this problem was even more pronounced in collections of very small diamonds that presented a chaotic jumble of orientations. Earlier efforts, for example, had explored whether drilling tiny features into diamond samples could aid in controlling their spin polarization.

The tunable spin properties in diamonds with defects known as nitrogen vacancies - in which nitrogen atoms take the place of carbon atoms in the crystal structure of diamonds - have also been studied for potential use in quantum computing. In those applications, scientists seek to control the spin polarization of electrons as a way to transmit and store information like the ones and zeros in more conventional magnetic computer data storage.

In the latest study, scientists found that by zapping a collection of microscale diamonds with green laser light, subjecting it to a weak magnetic field, and sweeping across the sample with a microwave source, they could enhance this controllable spin polarization property in the diamonds by hundreds of times compared with conventional MRI and NMR machines.

Emanuel Druga, an electrician in the UC Berkeley College of Chemistry R&D shops, devised a large measurement tool for the new technique that proved instrumental in confirming and fine-tuning the spin polarization properties of the diamond samples. "It allowed us to debug this in about a week," Ajoy said.

The device helped researchers to home in on a good size for the diamond crystals. At first, they were using crystals that measured about 100 microns, or 100 millionths of an inch across. The tiny samples of pinkish diamonds resemble fine red sand. After testing, they found that diamonds measuring about 1 to 5 microns performed about twice as well.

The tiny diamonds can be manufactured in economical processes by converting graphite into diamond, for example.

The team of scientists has already developed a miniaturized system that uses off-the-shelf components to produce the laser light, microwave energy, and magnetic field required to produce the spin polarization in the diamond samples, and they have applied for patents on the technique and the hyperpolarization system.

"You could think of retrofitting existing NMR magnets with one of these systems," said Raffi Nazaryan, who participated in the study as an undergraduate researcher at Berkeley Lab and UC Berkeley. Prototypes of the system cost just several thousand dollars, he noted.

While the spin is short-lived, researchers said they are exploring ways to continuously polarize the samples, and are also researching how to transfer this polarization to liquids. Ajoy said, "We could potentially recycle the liquid so it flows in a closed loop, or keep injecting newly polarized liquid."

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Goji Berries May Protect Against Age-Related Vision Loss
Tapping — A Proven Self-Applied Stress Intervention
Black Pepper as Preventive Measure Against Omicron
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

Recommended Reading
Nanodiamonds Reduce Infection After Root Canal Treatment
Using nanodiamonds with gutta percha in root canal treatment helps prevent bacterial infection and ....
Nanodiamonds Could Improve Effectiveness of Breast Cancer Treatment: Research
Doctors have recently begun to categorize breast cancers into four main groups according to the ......
Diamonds can be Used to Identify Cancerous Tumors at an Early Stage
By attaching hyperpolarized diamonds to molecules targeting cancers the technique can allow ......
Metal Waste Released by Nanodiamonds can Prevent Inflammation in Joints
Researchers have found that the metal waste released by nanodiamonds used in reinforcing synthetic ....

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)