A novel physiological approach has been developed to restore the gut's ecosystem in various diseases by using antimicrobial peptides.

TOP INSIGHT
A new physiological approach developed restores the gut's ecosystem and homeostasis while avoiding adverse effects.
In order to restore microbiota to a normal state, "bacteriotherapy" such as fecal microbiota transplantation and the use of probiotics has been implemented, but no physiological approach has yet been developed so far.
In experiments using mice, a team of scientists led by Professor Takanori Teshima of Hokkaido University discovered that the molecule R-Spondin1 stimulates intestinal stem cells to differentiate to Paneth cells which secrete antimicrobial peptides.
The peptides are called α-defensins and are known to have strong and selective antimicrobial activities against pathological bacteria.
When they administered R-Spondin1 into healthy mice, they detected a remarkable increase in the number of Paneth cells and amount of α-defensin secretion while no significant changes in gut microbiota was found. This indicated that α-defensin does not kill symbiotic microbes in a healthy gut.
The team has previously shown that GVHD leads to the loss of Paneth cells and induces intestinal dysbiosis. They have now found that the administration of R-Spondin1 prevents the GVHD-mediated depletion of Paneth cells and the decreased secretion of α-defensins.
"The two molecules we tested, R-Spondin1 and α-defensin, are both intrinsic to mammals, including humans, and found to have little effect on healthy microbiota. So, our results suggest a novel and physiological approach to restore the gut's ecosystem and homeostasis while avoiding adverse effects," says Takanori Teshima.
Source-Eurekalert
MEDINDIA




Email





