About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Approach for Treating Neuropathic Pain Discovered

by Colleen Fleiss on May 6, 2018 at 11:24 PM
New Approach for Treating Neuropathic Pain Discovered

An experimental molecule reduces neuropathic pain in rodents resulting from either nerve damage or a common chemotherapy drug, reveal researchers from Indiana University in Bloomington, USA and the Turku Centre for Biotechnology in Finland.

Neuropathic pain is the chronic, pathological pain that continues even when the cause of pain is removed. Causes include damage to nerve cells and medicines used to treat cancer. Neuropathic pain is extremely common, affecting up to 5-10% of the population globally, and no cures or effective treatments are currently available. Moreover, chemotherapy-induced pain can be so extreme that it causes some patients with cancer to discontinue treatment and greatly impairs quality of life in survivors.

Advertisement


Prior to this study, researchers were aware that pathological pain is triggered by a biological pathway that is activated by binding of the excitatory transmitter glutamate to receptors called NMDARs. This process then triggers activation of an enzyme neuronal nitric oxide synthase (nNOS) that generates nitric oxide gas that plays a role in aberrant pain sensation. However, experimental drugs designed to block either the NMDAR receptor or the nNOS enzyme can cause intolerable side effects, such as memory impairment and motor dysfunction. The team in the University of Turku in Finland was able to design the molecule after discovering that a protein, NOS1AP, that is downstream of nNOS, triggers several biological pathways that are associated with abnormal glutamate signaling, including neuropathic pain.

The Indiana University group demonstrated that an experimental molecule designed by the Turku group to prevent nNOS signalling to NOS1AP reduced two forms of neuropathic pain in rodents. These forms of pain develop as result of either chemotherapeutic agent paclitaxel or nerve damage.
Advertisement

The treatment also disrupted markers of nociceptive signaling in the spinal cord when the test drug was injected at that site into mice. Importantly, the NOS1AP inhibitor did not cause typical motor side effects observed with previous experimental molecules that directly target NMDARs. - Importantly, the chemical that prevents this signalling did not cause the negative side effects observed in previous experiments. Our studies suggest that the nNOS-NOS1AP interaction site is a previously unrecognized target for pain therapies", says Professor Andrea Hohmann from the Indiana University in Bloomington. The results suggest that the protein NOS1AP might be a valuable novel target in the development of more effective medicines to treat neuropathic pain.

- NOS1AP should be studied in more detail to find the best way to prevent this protein from contributing to chronic pain, said Senior Researcher Michael Courtney from the University of Turku.

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Education News

New Courses at State-run Healthcare Institutes Introduced
New medical courses related to nursing, and physiotherapy have been introduced in state-run healthcare and medical institutes in Delhi.
Using Disease-Modifying Therapy for Alzheimer's Disease Treatment
Patients with Alzheimer's disease can now be offered disease-modifying therapy using whole blood exchange as it has been proven effective in mice.
Patient Influencers Partnering with Companies for Drug Promotion
Claims by patient influencers may be an accurate reflection of their own experience with drugs, but it may not support that they will provide 'relief' quickly.
How To Keep Cool During A Heat Wave
Drink water throughout the day, even if you don't feel thirsty. Avoid drinks containing caffeine, sugar or alcohol, as these contribute to dehydration in hot weather
Health and Environmental Risks of Microplastics
Researchers are investigating the risks of microplastics, using lessons learned from nanotoxicology.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

New Approach for Treating Neuropathic Pain Discovered Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests