By combining local radiation therapy and anti-cancer vaccines with checkpoint inhibitors it is possible to increase the response rate for immunotherapy agents.

TOP INSIGHT
By combining local radiation therapy and anti-cancer vaccines with checkpoint inhibitors, researchers were able to increase the response rate for immunotherapy agents.
"Our results provide a step-by-step strategy to break the immune barriers that protect aggressive tumors by converting so-called 'cold', or non-T cell inflamed tumors, to a 'hot', or T cell-inflamed phenotype," said study author Ralph Weichselbaum, co-director of the University of Chicago Ludwig Center for Metastasis Research and chairman of Radiation and Cellular Oncology at the University. "By promoting T cell infiltration, radiation therapy improved the efficacy of tumor vaccines and checkpoint inhibitors."
The researchers chose a difficult animal model, mice that had fragments of murine pancreatic cancer implanted in their flanks. Results from immunotherapy trials in human patients with pancreatic cancer have been dismal. The only checkpoint inhibitor to show any activity in pancreatic cancer produced a partial response in eight percent of patients.
The UChicago team chose this model because it produced 'cold' tumors, cancers that were highly resistant to immunotherapy. These implanted tumors tended to have minimal infiltration with CD8+ T cells, the key players in tumor immunity, an indication that the mouse's immune system did not recognize the tumor tissue as foreign. These mice also had high expression of PD-L1 in regions surrounding the tumor. PD-L1 dampens the immune system's ability to respond. The combination of low T cell infiltration and high PD-L1 expression predicts poor survival.
Efforts to boost the immune response with a vaccine designed to provoke an immune response had little impact on tumor growth, even when paired with checkpoint blockade.
"These results suggest that radiation stimulated the recruitment of vaccine-primed T cells while anti-PD-L1 therapy protected these T cells from local immune suppression," the authors wrote. "This may be a promising therapy."
The researchers acknowledge some limitations. The work was done in mice and research on cancer vaccines is still in its infancy. But they argue that the combination of local radiation and vaccination to induce T cell infiltration, followed by a checkpoint inhibitor to disable PD-L1-mediated immunosuppression could increase the odds of tumor control.
"We feel confident that our model, with further testing, can covert unresponsive "cold" cancers to something more responsive to treatment, leading to improved outcomes for more patients," Weichselbaum said. "This study, based on a very challenging animal model, opens up a new strategy that could make immunotherapy more effective for more cancer types. Intriguingly, the study demonstrates new anti-tumor effects of radiation therapy in addition to the direct cytotoxic effects of radiation on tumor cells."
Source-Newswise
MEDINDIA




Email










