Finnish researchers have used Machine Learning (ML) to predict the presence of nosocomial or hospital-acquired infections caused by Staphylococcus epidermidis.

‘High-potential nosocomial infections occurring during surgery can be reduced by proactively identifying high-risk genotypes with the help of the machine learning device.’

A team of microbiologists and geneticists from the Aalto-University and the University of Helsinki, Finland, combined large-scale population genomics and in vitro measurements of immunologically relevant features of these bacteria. 




Using ML, they could successfully predict the risk of developing infection from the genomic features of a bacterial isolate, according to a study published in the journal Nature Communications.
It has not been known whether all members of the S. epidermidis population colonizing the skin asymptomatically are capable of causing such infections, or if some of them have a heightened tendency to do so when they enter either the bloodstream or a deep tissue.
But, the new finding opens the door for future technology where high-risk genotypes are identified proactively when a person is to undergo a surgical procedure, which has high potential to reduce the burden of nosocomial infections caused by S. epidermidis, the researchers noted.
Advertisement