New therapeutic intervention can be designed for difficult-to-treat cancers in the future, as the difference between cancer and non-cancer cells has been found, which can lead to the development of new drugs.

"We have discovered that breast cancer, leukemia, lymphoma and neuroblastoma cells have too many PIP-stops. This would upset protein function, and opens up a new avenue for developing drugs that block PIP-stop formation by kinase enzymes," said Michael Overduin, a University of Alberta cancer researcher and professor of biochemistry, who led the research project.
The team named the modification a PIP-stop because it stops proteins from interacting with lipid molecules called PIP.
Before making their discovery, the researchers first solved the 3-D structure of a sorting nexin protein, which is key to sorting proteins to their proper locations within the cell.
Powerful magnets in the U.K. and in the National High Field Nuclear Magnetic Resonance Centre (NANUC), Canada's national magnet lab based in Edmonton, were then used to detect signals from within individual atoms within the protein structure.
By focusing on the protein structure, the team was able to discover the PIP-stop and see how it blocked the protein's function.
Advertisement
Samples from cancer patients have too many PIP-stops, which could lead to the unregulated growth seen in tumor cells.
Advertisement
"Our goal now is to design inhibitors for the overactive kinases that create PIP-stops, and to use this information to design drug molecules that block the progression of cancers, particularly those which lack effective treatments," said Overduin.
Source-Eurekalert