About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

CRISPR Helps Uncover Gene Fusions Critical for Cancer Cell Growth

by Colleen Fleiss on May 19, 2019 at 5:00 AM
Font : A-A+

CRISPR Helps Uncover Gene Fusions Critical for Cancer Cell Growth

CRISPR tool was used by researchers at the Wellcome Sanger Institute, EMBL-EBI, Open Targets, GSK and their collaborators to uncover which gene fusions are critical for the growth of cancer cells. The team also identified a new gene fusion that presents a novel drug target for multiple cancers, including brain and ovarian cancers.

The results, published today in Nature Communications, give more certainty for the use of specific gene fusions to diagnose and guide the treatment of patients. Researchers suggest existing drugs could be repurposed to treat some people with pancreatic, breast and lung cancers, based on the gene fusions found in their tumours.

Advertisement


Gene fusions, caused by the abnormal joining of two otherwise different genes, play an important role in the development of cancer. They are currently used as diagnostic tools* to predict how particular cancer patients will respond to drugs, as well as prognostics, to estimate the outcome for a patient given the best possible care. They are also the targets of some of the latest targeted treatments for cancer.

Researchers have identified around 20,000** gene fusions so far, however their exact function and role in developing cancer remains poorly understood. Discriminating between fusions that have a role in cancer survival and those that do not has important clinical implications. In the first large-scale study of gene fusion function, researchers at the Wellcome Sanger Institute, EMBL-EBI, Open Targets, GSK and their collaborators analysed more than 8,000 gene fusions in over 1,000 human cancer cell lines, from 43 different cancer types, including paediatric cancers and cancers with unmet clinical need.
Advertisement

The team tested the cell lines against more than 350 anti-cancer drugs to see which existing drugs could be repurposed to potentially treat cancer patients with gene fusions, and employed CRISPR as a tool to discover which key gene fusions are critical for cancer cell survival. The team found that 90 per cent of gene fusions do not play an essential role in cancer. These results should be considered when inferring causes of cancer from the genome sequence of patients' tumours.

Dr Gabriele Picco, co-first author from the Wellcome Sanger Institute, said: "The majority of gene fusions are not essential for the survival of cancer cells. As genome sequencing patients' tumours becomes more common, those interpreting the data must be careful when considering whether a particular gene fusion is driving the cancer."

Researchers also discovered a new fusion, YAP1-MAML2, which is essential for the progression of multiple cancer types, such as brain and ovarian cancers.

Dr Mathew Garnett, lead author from the Wellcome Sanger Institute and Open Targets, said: "We discovered a handful of gene fusions that are key for cancer survival. These genetic changes may present opportunities for treating patients with existing drugs, or could be the drug targets of the future. We discovered a new gene fusion, YAP1-MAML2, which offers a new drug target for several cancers, including ovarian cancer."

Dr Julio Saez-Rodriguez, previously from EMBL-EBI and Open Targets, and now based at Heidelberg University, said: "Cancers differ between people and having a genomic view of these differences is increasing our understanding of cancer and opening up treatment options for patients. This study offers further opportunities to employ gene fusions as therapeutic biomarkers and stratify patients onto clinical trials, potentially offering more targeted and effective clinical studies."

The collaboration between researchers at Sanger, EMBL-EBI and GSK, the Open Targets partners, bolster the translation of these research results into new treatments. This research contributes towards building the Cancer Dependency Map***, a rulebook for the precision treatment of cancer in the future.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Cancer News

Could TKI Cancer Drugs Lead to Inflammatory Side Effects?
The mechanism by which the kinases cause inflammation has been discovered by scientists.
Are Biomarkers the Key to Identifying Early Pancreatic Risk?
Pancreatic cancer cases are on the rise. The biomarker approach could reduce the chance of developing pancreatic cancer.
How Does New Drugs Work Together to Reduce Lung Tumors?
New combination of medications trametinib and entinostat were found to decrease lung cancer in mice.
New Combination Therapy Proves Effective Against Prostate Cancer
Combination treatment with TALZENNA and XTANDI was found to benefit prostate cancer patients, revealed study.
Can Vitamin A Rich Diet Help Reduce Pancreatitis Risk
In leukemia patients, reduced amounts of dietary vitamin A is associated with a higher risk and severity of pancreatitis.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

CRISPR Helps Uncover Gene Fusions Critical for Cancer Cell Growth Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests