About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Computational Model That Simulates Arrhythmias That Lead to Cardiac Death

by Anjali Aryamvally on November 20, 2017 at 12:06 PM
Computational Model That Simulates Arrhythmias That Lead to Cardiac Death

A new computational model of heart tissue allows to estimate the probability of rare heartbeat irregularities that can cause sudden cardiac death. The model, presented in PLOS Computational Biology was developed by Mark Walker and colleagues from Johns Hopkins University, Baltimore, and IBM Research, Yorktown Heights, NY.

An increased risk of sudden cardiac death is associated with some heart diseases. It occurs when an irregular heartbeat (arrhythmia) interferes with normal electrical signaling in the heart, leading to cardiac arrest. Previous research has shown that simultaneous, spontaneous calcium release by clusters of adjacent heart cells can cause premature heartbeats that trigger these deadly arrhythmias.

Advertisement


Despite their importance, arrhythmias that can cause sudden cardiac death are so rare that estimating their probability is difficult, even for powerful computers. For instance, using a "brute force" approach, more than 1 billion simulations would be required to accurately estimate the probability of an event that has a one in 1 million chance of occurring.

In the new study, the researchers developed a method that requires just hundreds of simulations in order to estimate the probability of a deadly arrhythmia. These simulations are powered by a computational model that, unlike previously developed models, realistically incorporates details of the molecular processes that occur in heart cells.
Advertisement

The researchers demonstrated that, by altering model parameters, they could use the model to investigate how particular molecular processes might control the probability of deadly arrhythmias. They found that specific, molecular-level electrical disruptions associated with heart failure increased the probability of deadly arrhythmias by several orders of magnitude.

"This study represents an important step forward in understanding how to pinpoint the molecular processes that are the primary regulators of the probability of occurrence of rare arrhythmic events," says study co-author Raimond Winslow. "As such, our approach offers a powerful new computational tool for identifying the optimal drug targets for pharmacotherapy directed at preventing arrhythmias."

"Multiscale computer models are critical to link an improved understanding of drug-disease mechanisms to tissue and organ behavior in complex diseases like heart failure," says Karim Azer, Sr. Director and Head of Systems Pharmacology, Sanofi, who was not involved in the study. He added, "The models provide predictions that can be tested in the laboratory or the clinic, and as such, the pharmaceutical industry is increasingly utilizing mathematical and computational modeling approaches for enabling key drug discovery and development decisions regarding drug and patient characteristics (i.e., towards precision medicine)."

In the future, the team plans to apply their method to three-dimensional cell clusters, instead of the one-dimensional fibers explored in this study. Future work could also employ experiments with engineered human cardiac tissue to help verify the model's predictions.



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Computational Model That Simulates Arrhythmias That Lead to Cardiac Death Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests