BigH1, the Key to Convert Stem Cells into Male Sex Cells

by Anjali Aryamvally on  December 27, 2017 at 12:31 PM Research News
RSS Email Print This Page Comment bookmark
Font : A-A+

New study by a research team at the Chromatin Structure and Function Lab at the Institute for Research in Biomedicine (IRB Barcelona) has identified the histone BigH1 as a key protein in stem cell differentiation to male sex cells. Histones are basic proteins that confer order and structure to DNA and they play an important role in gene regulation.
BigH1, the Key to Convert Stem Cells into Male Sex Cells
BigH1, the Key to Convert Stem Cells into Male Sex Cells

Depending on the stage of the process, histone BigH1 is either present and represses specific genes or it is inhibited to allow gene expression, thereby promoting differentiation, a process in which stem cells produce adult sex cells. When this delicate balance is lost, male Drosophila melanogaster show gonadal malformations and infertility.

"We hypothesize that BigH1 represses the genes that are not specific to the germ line (when stem cells give rise to sex cells). But we now have to unravel how it does this and how it is activated and silenced," says Ferran Azorín, CSIC Research Professor and group leader at IRB Barcelona.

The role of histone H1 in male infertility

All animals have histones that are specific to the germ line. In Drosophila, BigH1 is expressed in the male and female germ lines. In contrast, variants of histone H1 differ between males and females in mice and in humans. "The histone BigH1, which we have studied in Drosophila melanogaster, shows most resemblance to the germ line variant of human females but it also shows some similarities to variants of the male germ line," explains Albert Carbonell, postdoctoral fellow and first author of the paper. "Because of these similarities, our work can contribute to our understanding of sex cell diferentiation in humans and help to explain some types of infertility," he adds.

Histones as regulators in stem cell differentiation into tissue cells

All the cells of an organism, whether skin, intestinal, lung or any other type, arise from the differentiation of stem cells, and it is known that histones play a crucial role in this process in many lineages. This study describes the mechanism of action and inhibition exerted by BigH1 to regulate spermatogenesis in Drosophila and which may work in a similar manner in other species.

The lab is now focusing on BigH1 during the differentiation of female sex cells. "We know that this histone is essential, but we assume it will have a distinct role since the process involving female sex cells is considerably different to that of male ones," says Paula Climent, a PhD student in the lab and one of the authors of the article.



Source: Eurekalert

Post a Comment

Comments should be on the topic and should not be abusive. The editorial team reserves the right to review and moderate the comments posted on the site.
Notify me when reply is posted
I agree to the terms and conditions
Advertisement

Recommended Reading

More News on:

Stem Cells - Cord Blood Stem Cells - Fundamentals Parkinsons Disease Surgical Treatment Genetics and Stem Cells Sex Facts Prostitution: Fresh Stakes in the Oldest Trade Sexual Intercourse Facts Safe Sex Top Ten Trivial Sex Facts Top Ten Sex Tips for Men 

News A - Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

News Search

Medindia Newsletters

Subscribe to our Free Newsletters!

Terms & Conditions and Privacy Policy.

Find a Doctor

Stay Connected

  • Available on the Android Market
  • Available on the App Store

News Category

News Archive