Medindia LOGIN REGISTER
Medindia

Water: The Key to Understanding Sweetness

by Adeline Dorcas on Jul 19 2018 4:31 PM

Water: The Key to Understanding Sweetness
The understanding of sweetness depends on molecular interactions between specific sugars and water in the saliva, reports a new study. The findings of the study are published in The Journal of Physical Chemistry Letters.
A cranberry, honey or a candy bar - which tastes the sweetest? These foods contain sugars that humans can perceive differently. A cranberry seems tart, whereas a candy bar can be excessively sweet, and honey is somewhere in the middle.

The sugars mannose, glucose, and fructose have almost identical chemical structures. Yet fructose (found in many candy bars) is about twice as sweet as glucose (found in honey), whereas mannose (found in cranberries) is considered tasteless.

Sugars stimulate specific protein receptors on the taste buds of the tongue, which sends a signal to the brain that a food tastes sweet. But scientists don't know why we perceive some sugars as being sweeter than others. Because these interactions take place in saliva, which is mostly water, Maria Antonietta Ricci and colleagues wondered if water might play a role.

The researchers used a technique called neutron diffraction with isotopic substitution to probe the structures of mannose, glucose, and fructose in water. They found that none of the sugars substantially disrupted how water molecules interact with each other.

However, the three sugars interacted with water molecules in different ways. Mannose, the least sweet of the sugars, formed longer and weaker hydrogen bonds with water than glucose or fructose. Fructose, the sweetest of the sugars, formed the shortest and strongest hydrogen bonds with water.

The research team surmise that shorter hydrogen bonds with water could allow the sugar molecule to bind more snugly with the protein receptor, causing greater stimulation and perception of sweetness.

Advertisement
Source-Eurekalert


Advertisement