Russian scientists from Kaliningrad and St. Petersburg have synthesized nitrogen-containing cyclic compounds that differ only in the relative position of side substituents that can be used for treating resistant-bacteria.
N-Aryl-C-nitroazoles are heterocyclic compounds that are commonly used as pesticides and fungicides. They are toxic to humans and not used. Recently it has been suggested these agents could help fight pathogenic bacteria. But a great //amount of work must be carried out at the molecular level, accurate optimization of the molecular environment of the nitro-heteroaromatic "warhead".
‘New heterocyclic compounds can inhibit the growth of all ESKAPE pathogens. They may help to develop new effective drugs against resistant-bacterial diseases.’
Read More..
The validity of this approach was demonstrated in the early 2000s through the development of anti-tuberculosis drugs delamanid and pretomanid, currently approved for medical use. They act like prodrugs, that is, the substance itself is inactive, but acquires new properties when it enters the human body.Read More..
In terms of this work, scientists from the Baltic Federal University together with colleagues from St. Petersburg State University, the L. Pasteur Research Institute of Epidemiology and Microbiology, and the Research Institute of Phthisiopulmonology in St. Petersburg, are looking for new effective antibacterial drugs, studying various nitrogen heteroaromatic compounds with a nitro group which might be used in medicine further.
The compound OTB-021 was found to work well against drug-sensitive strains of tuberculosis pathogens, but was powerless against strains of pathogens that belong to the so-called ESKAPE panel.
ESKAPE is an abbreviation for the names of bacterial species most often developing resistance to antibiotics: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes.
It is a kind of a pun: "eskape" sounds like "escape", and the bacteria of this panel are known to be resistant to most of the known antibiotics, that is, they seem to "escape" from drugs.
Advertisement
The sensitivity of microorganisms to a new compound was tested via disk diffusion method. Zones of the inhibition of bacterial growth by antibiotic disks and dried solution of the compound in Petri dishes were measured.
Advertisement
"Starting from the structure of the antimycobacterial OTB-021 which has no activity against ESKAPE pathogens, we developed, synthesized, and tested two isomeric series of novel analogs with an amino group that changes its position in the structure."
These compounds can inhibit the growth of all ESKAPE pathogens. Probably, they will help to develop new effective drugs against bacterial diseases which are sometimes very difficult to treat," says Mikhail Krasavin, Doctor of Chemical Science, Professor of the Russian Academy of Sciences, professor and researcher at the Immanuel Kant Baltic Federal University.
Source-Eurekalert