About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Study Sheds Light on Anatomy and Phylogenetic Position of Human Ancestors

by Bidita Debnath on April 14, 2013 at 6:04 PM
 Study Sheds Light on Anatomy and Phylogenetic Position of Human Ancestors

On how the hominid Australopithecus sediba (Au. sediba) walked, chewed, and moved nearly two million years ago, a team of scientists has shed light.

Their research also showed that Au. sediba had a notable feature that differed from that of modern humans-a functionally longer and more flexible lower back.

Advertisement

Together, the studies offer a comprehensive depiction of some of the most complete early human ancestral remains ever discovered.

Since its discovery in August 2008, the site of Malapa-located about 30 miles northwest of Johannesburg-has yielded more than 220 bones of early hominins representing more than five individuals, including the remains of babies, juveniles, and adults.
Advertisement

The new evidence is based on two individuals from the site. The fossils from the site date to 1.977 to 1.98 million years in age.

"The abundance and remarkable preservation of fossils from Malapa provide unique insights into the way this fascinating extinct species interacted with and moved around in its environment," said New York University anthropologist Scott Williams.

Williams, part of NYU's Center for the Study of Human Origins, and his colleagues authored a paper describing Au. sediba's vertebral column. The work is the first to analyze elements of the cervical, thoracic, lumbar, and sacral regions of the vertebral column in Au. sediba. Their analysis was based on partially complete spines of the two Au. sediba skeletons.

Their study reveals that Au. sediba had a human-like curvature of the lower back, but it was functionally longer and more flexible than that of modern humans.

"They probably walked in a way that we might find strange-a 'compromise' form of bipedalism indicative of a hominin that still partially relied on climbing trees," Williams explained.

He noted that "the adult female is the first early hominin skeleton that preserves an intact terminal thoracic region and this provides critical information on the transition in inter-vertebral joints, and, by inference, mobility of the lower back."

Williams added that the bony spine of Au. sediba likely had the same number of vertebrae as that of modern humans

However, he noted that it differed in one primary aspect of its configuration-the transition in inter-vertebral articular facets occurred at a higher level of the spine that than normally occurs in modern humans.

In combination with other features, a functionally longer lower back would have allowed for a more flexible spine in Au. sediba relative to that of modern humans, he said

In addition, morphological indicators of strong lumbar curvature suggest that Au. sediba evolved in this regard relative to Au. africanus, which lived between 3.03 and 2.04 million years ago, and closer to the more recent Nariokotome Homo erectus skeleton-to date, the most complete early human skeleton discovered.

The research was conducted at the Evolutionary Studies Institute (ESI) at the University of the Witwatersrand (Wits) in South Africa, where Au. sebida's remains were discovered in 2008.

Overall, the fossils provide an "unprecedented insight into the anatomy and phylogenetic position of an early human ancestor," observed Professor Lee Berger, the project leader from the Wits Evolutionary Studies Institute.

Their research appears in six papers in the latest issue of the journal Science.

Source: ANI
Font : A-A+

Advertisement

Advertisement
Advertisement

Latest Research News

Insight into Cellular Stress: Mechanisms Behind mRNA Sequestration Revealed
The discovery deepens our understanding of m6A biology and stress granule formation, with implications for neurodegenerative diseases.
Disrupted Circadian Rhythm Elevates the Risk of Parkinson's Disease
Trouble with sleep and the body's clock may increase your risk for Parkinson's, as per a new study.
A Wake-Up Call for Women  Hot Flashes Could Point to Alzheimer's Risk
New study uncovers a link between nocturnal hot flashes and Alzheimer's risk in menopausal women, suggesting a potential biomarker.
Breakthrough Brain-Centered Approach Reduces Chronic Back Pain
Our discovery revealed that a minority of individuals attributed their chronic pain to their brain's involvement.
New Statement to Protect Athletes' Health Published
Relative Energy Deficiency in Sport syndrome is overlooked by athletes and can be worsened by 'sports culture' due to its perceived short-term performance benefits.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Study Sheds Light on Anatomy and Phylogenetic Position of Human Ancestors Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests