About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Specific Gene Variants may Raise Bipolar Disorder Risk

by Colleen Fleiss on January 14, 2019 at 1:21 AM
Font : A-A+

Specific Gene Variants may Raise Bipolar Disorder Risk

Mutations in SYNE1 gene that encodes the protein CPG2 are associated with increased bipolar disorder risk, found study by researchers at The Picower Institute for Learning and Memory at MIT.

Led by Elly Nedivi, professor in MIT's departments of Biology and Brain and Cognitive Sciences, and former postdoc Mette Rathje, the study goes beyond merely reporting associations between genetic variations and psychiatric disease. Instead, the team's analysis and experiments show how a set of genetic differences in patients with bipolar disorder can lead to specific physiological dysfunction for neural circuit connections, or synapses, in the brain.

Advertisement


The mechanistic detail and specificity of the findings provide new and potentially important information for developing novel treatment strategies and for improving diagnostics, Nedivi said.

"It's a rare situation where people have been able to link mutations genetically associated with increased risk of a mental health disorder to the underlying cellular dysfunction," said Nedivi, senior author of the study online in Molecular Psychiatry. "For bipolar disorder this might be the one and only."
Advertisement

Notably, they found that sometimes combinations of the variants, rather than single genetic differences, were required for significant dysfunction to become apparent in laboratory models. "Our data fit a genetic architecture of BD, likely involving clusters of both regulatory and protein-coding variants, whose combined contribution to phenotype is an important piece of a puzzle containing other risk and protective factors influencing BD susceptibility," the authors wrote.

CPG2 in the bipolar brain

During years of fundamental studies of synapses, Nedivi discovered CPG2, a protein expressed in response to neural activity, that helps regulate the number of receptors for the neurotransmitter glutamate at excitatory synapses. Regulation of glutamate receptor numbers is a key mechanism for modulating the strength of connections in brain circuits. When genetic studies identified SYNE1 as a risk gene specific to bipolar disorder, Nedivi's team recognized the opportunity to shed light into the cellular mechanisms of this devastating neuropsychiatric disorder typified by recurring episodes of mania and depression.

For the new study, Rathje led the charge to investigate how CPG2 may be different in people with the disease. To do that, she collected samples of postmortem brain tissue from six brain banks. The samples included tissue from people who had been diagnosed with bipolar disorder, people who had neuropsychiatric disorders with comorbid symptoms such as depression or schizophrenia, and people who did not have any of those illnesses. Only in samples from people with bipolar disorder was CPG2 significantly lower. Other key synaptic proteins were not uniquely lower in bipolar patients.

"Our findings show a specific correlation between low CPG2 levels and incidence of BD that is not shared with schizophrenia or major depression patients," the authors wrote. From there they used deep-sequencing techniques on the same brain samples to look for genetic variations in the SYNE1 regions of BD patients with reduced CPG2 levels. They specifically looked at ones located in regions of the gene that could regulate expression of CPG2 and therefore its abundance.

Meanwhile, they also combed through genomic databases to identify genetic variants in regions of the gene that code CPG2. Those mutations could adversely affect how the protein is built and functions.

Examining effects

The researchers then conducted a series of experiments to test the physiological consequences of both the regulatory and protein coding variants found in BD patients.

To test effects of non-coding variants on CPG2 expression, they cloned the CPG2 promoter regions from the human SYNE1 gene and attached them to a 'reporter' that would measure how effective they were in directing protein expression in cultured neurons. They then compared these to the same regions cloned from BD patients that contained specific variants individually or in combination. Some did not affect the neurons' ability to express CPG2 but some did profoundly. In two cases, pairs of variants (but neither of them individually), also reduced CPG2 expression.

Previously Nedivi's lab showed that human CPG2 can be used to replace rat CPG2 in culture neurons, and that it works the same way to regulate glutamate receptor levels. Using this assay they tested which of the coding variants might cause problems with CPG2's cellular function. They found specific culprits that either reduced the ability of CPG2 to locate in the "spines" that house excitatory synapses or that decreased the proper cycling of glutamate receptors within synapses.

The findings show how genetic variations associated with BD disrupt the levels and function of a protein crucial to synaptic activity and therefore the health of neural connections. It remains to be shown how these cellular deficits manifest as biopolar disorder.

Nedivi's lab plans further studies including assessing behavioral implications of difference-making variants in lab animals. Another is to take a deeper look at how variants affect glutamate receptor cycling and whether there are ways to fix it. Finally, she said, she wants to continue investigating human samples to gain a more comprehensive view of how specific combinations of CPG2-affecting variants relate to disease risk and manifestation.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
January is the Thyroid Awareness Month in 2022
Menstrual Disorders
Coffee May Help You Fight Endometrial Cancer
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Quiz on Depression Bipolar Disorder Weaver Syndrome Loss of Taste Schizoaffective Disorder Euphoria Social Anxiety Disorder Anosognosia Mood Swings 

Recommended Reading
Bipolar Disorder
Bipolar Disorder is a brain disorder in which people show "mood swings". Changes in the level of .....
Quiz on Bipolar Disorder
Bipolar disorder has been rated among the more common disability-inducing conditions. It reduces .....
Bipolar Disorder Patients At Higher Risk For Aging-Related Diseases
Individuals with a family history of bipolar disorder age faster and the lithium drug used for ......
Cognitive Impairment in Patients With Bipolar Disorder
Cognitive impairments do occur in patients with bipolar disorder and should be addressed....
Anosognosia
Anosognosia is the lack of awareness or insight in a patient to understand that he/she has a disease...
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
Euphoria
Euphoria is an exaggerated state of happiness and well-being that is beyond the normal emotional res...
Loss of Taste
Symptom of loss of taste usually occurs in combination with loss of smell and can be complete loss o...
Mood Swings
It is normal to go through mood changes such as joy, sadness or anger every day, but when these mood...
Schizoaffective Disorder
Schizoaffective disorder is a serious mental disorder in which the individual reflects symptoms that...
Social Anxiety Disorder
Social anxiety disorder is a common mental health problem where a person is abnormally fearful of so...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
CONSULT A DOCTOR
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)