About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Scientists Reveal New Key Mechanism of Epileptic Seizures

by Colleen Fleiss on January 9, 2019 at 3:07 AM
Scientists Reveal New Key Mechanism of Epileptic Seizures

Key factor leading to the seizures has been identified by Russian scientists. This work was supported by the Russian Science Foundation and published in Frontiers in Cellular Neuroscience.

A person subject to epilepsy suffers from occasional convulsive seizures. The condition when the seizures follow each other after a short time is called epistatus and considered to be particularly dangerous. Although scientists know that this happen due to excessive excitation of neurons in the brain, the cause of such excitation remains unclear.

Advertisement


In the new study, the researchers examined the signaling processes in the cortex of the temporal lobe before and after the seizures. This area was chosen on purpose since the epilepsy associated with it is the most common. Scientists conducted their research on a rat brain cut placed in a special pro-epileptic solution that mimics convulsions in the patient's brain tissue. To study the excitability of neurons, scientists analyzed the currents that occur in the brain cells stimulated by electricity, before and after a 15-minute epistatus.

"Neurons send each other signals that can be excitatory or inhibitory, depending on the type of target receptor on the cell membrane. For example, the first are those that react to glutamate and its analogues, the second are sensitive to gamma-aminobutyric acid or GABA. Yet GABA receptors of those suffering with the epilepsy also become exciting. There lies the main research difficulty: when several signals act on the neuron at once it is very difficult to assess their individual contribution," says Anton Chizhov, doctor of physical and mathematical sciences, senior researcher at the Ioffe Institute of RAS and Leading Researcher at Sechenov Institute of Evolutionary Physiology and Biochemistry.
Advertisement

During their experiments, scientists examined the effect of amino acids (constituent proteins) on receptors of all major types (AMPA, NMDA and GABA). It turned out that each of these components of the signal after epileptic electrical discharges becomes stronger and longer. But what if this happened as a result of affecting only one amplified signal on the remaining paths? To find this out scientists created a mathematical model of interacting nerve cells system. According to the model, only the conductivity of the AMPA receptors in the network of neurons significantly changes, leading to stronger excitation of all neurons and stronger synaptic signals recorded on one nerve cell.

"Further studies showed that this is the mechanism of synaptic plasticity with the incorporation of new calcium-permeable AMPA receptors into the cell membranes. Under normal conditions, such a process in the brain is associated with memory and learning, but under pathological conditions it leads to an excitability increase up to tens of minutes. Therefore, the risk of a new convulsive discharge rises, which may lead to pathology fixation.

Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Scientists Reveal New Key Mechanism of Epileptic Seizures Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests