About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

New Rubbery 'Smart' Material Could Treat Open Wounds, Infections and Cancer

by Adeline Dorcas on February 27, 2019 at 2:46 PM
Font : A-A+

New Rubbery 'Smart' Material Could Treat Open Wounds, Infections and Cancer

Newly created rubbery 'smart' material could offer new hope for treating open wounds, infections and cancer, reports a new study. The findings of the study are published in the journal Acta Biomaterialia.

A team of researchers in the Syracuse University College of Engineering and Computer Science have developed a material--a new kind of shape memory polymer (SMP)--that could have major implications for health care.

Advertisement


SMPs are soft, rubbery, "smart" materials that can change shape in response to external stimuli like temperature changes or exposure to light. They can hold each shape indefinitely and turn back when triggered to do so.

SMPs have many potential biomedical applications. For example, they are ideal as cardiovascular stents because they can be one shape for surgical insertion and another once positioned in a blood vessel. The warmth of the patient's body is all that is required to trigger the shape change.
Advertisement

Along with collaborators at Bucknell University, Syracuse University researchers have designed an SMP that can change its shape in response to exposure to enzymes and is compatible with living cells. It requires no additional trigger, such as a change in temperature. Given these properties, it can respond to cellular activity like healing.

"The enzymatic sensitivity of the material allows it to respond directly to cell behavior," explains biomedical engineering Ph.D. candidate Shelby L. Buffington. "For instance, you could place it over a wound, and as the tissue remodeled and degraded it, the SMP would slowly pull the wound closed. It could be adapted to play a role in treating infections and cancer by adjusting the material's chemistry."

The research team includes Buffington, Justine E. Paul '18, bioengineering junior Mark M. Macios, Professor James H. Henderson and Bucknell's Patrick T. Mather and Matthew M. Ali Ph.D. '18. Their research, "Enzymatically triggered shape memory polymers," was published in Acta Biomaterialia this year.

The team created the material using a process called dual electrospinning, in which a high-voltage current is applied to two needle tips pumping two separate polymer solutions. The voltage draws out the polymer fibers, and they are blended into a fiber polymer mat. The proper combination of fibers gives the material its shape memory qualities.

Detailed in their paper, the teams analyzed the material's properties, shape memory performance, and cytocompatibility. Their experiments successfully demonstrated that the SMP's original shape could be recovered through a degree of reversal, or degradation, of the shape-fixing phase.

Today, the research team is examining their SMP in cancer and macrophage cell cultures. They hope that with additional research, they will uncover practical uses for their material using lower concentrations of enzymes, produced by less extreme cellular activity.

"We anticipate that the materials we're developing could have broad application in health care. For example, our SMPs could be used in drugs that only activate when the target cells or organ are in the desired physiological state, in scaffolds that guide tissue regeneration in response to the behavior of the regenerating tissue itself, and in decision-making biosensors that guide patient treatment more effectively," Henderson says. "We're very excited to have achieved these first enzymatically responsive SMPs."

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

What Are the Effects of T Cells on Blood Pressure and Inflammation?
A new study explored the link between T immune cells in ill patients and mortality risk.
How Does a New Procedure Help Patients Avoid Leg Amputation?
Limb savage procedure benefits patients with severe vascular disease who are at risk for amputation of their limbs.
Omega-3 Can Save Alzheimer's Patients from Vision Loss
Does omega-3 help Alzheimer's patients? A new form of omega-3 helped restore specific markers of eye health in mice bred with aspects of early-onset Alzheimer's disease.
Why Is Asthma Linked to Increased Risk of Osteoarthritis?
Drugs used to inhibit the physiological responses for allergic reactions lessen osteoarthritis risk, revealed research.
 Experiments on Child Brain Tumour and Muscle Ageing Heading to Space
The International Space Station will be used to carry out experiments seeking to improve understanding of incurable child brain tumors and the muscle aging process.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

New Rubbery 'Smart' Material Could Treat Open Wounds, Infections and Cancer Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests