By using CRISPRa researchers have succeeded in converting skin cells into pluripotent stem cells by activating the cell's own genes.

‘By using CRISPRa researchers have succeeded in converting skin cells into pluripotent stem cells by activating the cell's own genes.’

"CRISPR/Cas9 can be used to activate genes. This is an attractive possibility for cellular reprogramming because multiple genes can be targeted at the same time. Reprogramming based on activation of endogenous genes rather than overexpression of transgenes is also theoretically a more physiological way of controlling cell fate and may result in more normal cells. In this study, we show that it is possible to engineer a CRISPR activator system that allows robust reprogramming of iPSC", tells Professor Otonkoski. 




An important key for the success was also activating a critical genetic element that was earlier found to regulate the earliest steps of human embryo development after fertilization. "Using this technology, pluripotent stem cells were obtained that resembled very closely typical early embryonal cells", Professor Kere says.
The discovery also suggests that it might be possible to improve many other reprogramming tasks by addressing genetic elements typical of the intended target cell type.
"The technology may find practical use in bio banking and many other tissue technology applications", says PhD student, MSc Jere Weltner, the first author of the article published in Nature Communications. "In addition, the study opens up new insights into the mechanisms controlling early embryonic gene activation."
Source-Eurekalert