p53 was found to play a role in the regulation of metastases formation. The p53 tumor suppressor protein is also known as the guardian of the genome.

TOP INSIGHT
The p53 tumor suppressor protein also known as "the guardian of the genome”, supports the genetic stability of the cells and prevents the occurrence of malignant tumors.
Tatiana Denisenko, a research associate of the Faculty of Medicine, MSU, and Anastasiya Pivniuk, a graduate student of the faculty, analysed over 175 publications and found this link. They discovered that depending on the presence of either wild type or a mutated variant of the p53 protein in the tumor the autophagy might play a role in the regulation of various stages of metastasis. In particular, the protein regulates resistance of tumor cells to anoikis - death of cells that lost their interaction. The protein also influences activation and suppression of epithelial-mesenchymal transition, a process in the course of which epithelium cell acquire the qualities of mesenchyme, i.e. embryonic connective tissue. This process takes place during embryonic development, the healing of wounds, and pathological processes such as tumor growth. Moreover, the p53 protein regulates the cooperation between cancer cells and the extracellular matrix and their distribution over other tissues.
"It turned out that the role of p53, its target proteins, and autophagy in metastasis regulation is tissue-specific. It is determined by the type of tumor, molecular context, and several other processes. Therefore, it is so important to understand the mechanisms of metastasis on the molecular level and to identify its connection with cell death mechanisms. It would help also to predict the development of metastasis and increase the efficiency of target therapy. We have analysed several new compounds that are able to suppress metastasis. They can activate autophagy by means of specific targeting of the "p53-autophagy" link. Based on present information, all compounds are now on different stages of clinical trials for cancer therapy", concluded Boris Zhivotovsky, the lead author of the work, and the head of the laboratory for investigation of apoptosis mechanisms, Faculty of Medicine, MSU.
Source-Eurekalert
MEDINDIA




Email









