
How the RNA molecules found in certain viruses can mimic the shape of other molecules in the attempt of hijacking a cell and making more viruses has now been explained by researchers.
The findings by Jeffrey S. Kieft, PhD, associate professor of biochemistry and molecular genetics at the School of Medicine and an early career scientist with the Howard Hughes Medical Institute, and his colleagues solve a biochemical and molecular mystery that has confounded scientists for decades.
Viruses are worldwide threats to health and agriculture. To multiply, viruses infect a cell and take over that cell's biochemical machinery. Thus, understanding the fundamental molecular processes used by viruses to conquer cells is important. Among these processes is the ability of molecules created by viruses to 'mimic' the structure and behavior of cellular molecules. The virus' molecular 'Trojan horses' are part of their strategy to take over cells.
Using a technique called x-ray crystallography, Kieft and colleagues visualized the molecule's complex three-dimensional structure to high resolution. They found that the viral RNA has a 'two-faced' architecture: one face is a mimic of the cell's RNA, the other face is less similar and this probably gives the ability to perform several tasks during infection. This type of behavior may be widespread, thus this research could apply to many different viruses.
This understanding of how a viral RNA can mimic other molecules as part of a strategy to 'hijack' a cell may help scientists develop treatments or vaccines against infectious diseases.
Source: Eurekalert
Advertisement
|
Latest Research News




