
Until now, viral
systems have been the most effective method for delivering genetic
matter but they pose significant safety problems. Lipid nanoparticles (SLNs and NLCs) are regarded as highly promising
systems for delivering nucleic acids in gene therapy.
"Non-viral vectors,
including SLNs and NLCs, are less effective but much safer even though
their effectiveness has increased significantly in recent years",
pointed out Alicia Rodríguez, María Ángeles Solinís and Ana del Pozo,
authors of the article published in the European Journal of Pharmaceutics and Biopharmaceutics.
This review article describes these systems and their main advantages in gene therapy, such as their capacity to protect the gene material against degradation, to facilitate cell and nucleus internalization and to boost the transfection process. "What is more, the nanoparticles are made up of biocompatible, biodegradable materials, they are easy to produce on a large scale, they can be sterilized and freeze-dried and are very stable both in biological fluids and in storage," explained the researchers.
The publication also includes other pieces of work by this UPV/EHU research group on the application of SLNs in the treatment of rare diseases, such as chromosome-X-linked juvenile retinoschisis, a disorder in which the retina becomes destructured due to a deficiency in the protein retinoschisin. "One of the main achievements of our studies in this field has been to demonstrate, also for the first time, the capacity of a non-viral vector to transfect the retina of animals lacking the gene that encodes this protein and partially restore its structure, showing than non-viral gene therapy is a viable, promising therapeutic tool for treating degenerative disorders of the retina," specified the researchers.
Source: Eurekalert
Advertisement
|