Brazilian publication has unraveled the effects of Zika on astrocytes, one of the most damaged cells during the virus infection.

TOP INSIGHT
Due to the crucial role of astrocytes in the upgrowth and functioning of the brain, their imbalance during neural development should contribute to serious health implications throughout life.
The corresponding author of the article was the neuroscientist Stevens Rehen, a researcher at UFRJ and IDOR involved in several other studies related to Zika, including the first publication to analyze the effects of the virus on laboratory-developed human mini-brains. In the most recent article, Rehen and his team uncovered the changes that this viral infection causes in developing neural cells, as well as their consequences for brain development. "The scientific literature had already identified Zika's attack on astrocytes, but until now, no study had focused on understanding how it affects its functioning," says Karina Karmirian, a member of Rehen's group and one of the first authors of the study. Among the damages that the virus causes to these cells are the overload of its mitochondria, DNA breakage, and oxidative stress, the latter being a common disturbance to premature aging, cancer, and neurodegenerative diseases.
Multiple Analyzes
To achieve the scope of the research, the scientists created separately 3 cell types that are present in the human fetal brain: astrocytes, neurons, and neural stem cells. When infected with the Zika virus, the most severe damages were proven in astrocytes, whose organelles responsible for cellular respiration -- the mitochondria -- started to excessively produce free radicals, generating oxidative stress and changes in their morphology. In addition to the high percentage of cell death, many surviving astrocytes also revealed reduced and irregular cell nuclei after the infection.
Helena Borges, a professor at UFRJ and one of the researchers in the study, detailed why the damage caused by the Zika virus can be permanent in astrocytes. "To repair double-strand DNA breaks, there are two main types of DNA repair: one that uses an entire copy of DNA as a template - the homologous recombination - and a faster repair mechanism yet potentially subject to mutation, which dispenses the presence of an integrated DNA copy: the non-homologous recombination. Proliferating cells, like neural stem cells, can use both repair mechanisms. However, differentiated cells such as astrocytes have a reduced chance of homologous recombination, increasing the chance of permanent mutations appearing in these cells", explains the expert.
This regards not only brain malformations such as microcephaly, but possibly other neurological disorders that could manifest in the adulthood of those infected in the womb, regardless of apparent malformations. The researchers say that due to the fledgling of long-term studies regarding Zika, further investigations will still be needed to determine the consequences of its infection on both children and adults, as possible neurological problems may occur subsequent to the extended action of the virus on young astrocytes.
MEDINDIA




Email






