About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Differences in Learning from Success and Failure

by Rajashri on August 1, 2009 at 8:27 PM
Font : A-A+

 Differences in Learning from Success and Failure

Researchers at MIT's Picower Institute for Learning and Memory have revealed that brain cells may only learn from experience when we do something right and not when we fail.

In the July 30 issue of the journal Neuron, Earl K. Miller, the Picower Professor of Neuroscience, and MIT colleagues Mark Histed and Anitha Pasupathy have created for the first time a unique snapshot of the learning process that shows how single cells change their responses in real time as a result of information about what is the right action and what is the wrong one.

Advertisement

"We have shown that brain cells keep track of whether recent behaviors were successful or not," Miller said. Furthermore, when a behavior was successful, cells became more finely tuned to what the animal was learning. After a failure, there was little or no change in the brain nor was there any improvement in behavior.

The study sheds light on the neural mechanisms linking environmental feedback to neural plasticity the brain's ability to change in response to experience. It has implications for understanding how we learn, and understanding and treating learning disorders.
Advertisement

Rewarding success

Monkeys were given the task of looking at two alternating images on a computer screen. For one picture, the animal was rewarded when it shifted its gaze to the right; for another picture it was supposed to look left. The monkeys used trial and error to figure out which images cued which movements.

The researchers found that whether the animals' answers were right or wrong, signals within certain parts of their brains "resonated" with the repercussions of their answers for several seconds. The neural activity following a correct answer and a reward helped the monkeys do better on the trial that popped up a few seconds later.

"If the monkey just got a correct answer, a signal lingered in its brain that said, 'You did the right thing.' Right after a correct answer, neurons processed information more sharply and effectively, and the monkey was more likely to get the next answer correct as well," Miller said, "But after an error there was no improvement. In other words, only after successes, not failures, did brain processing and the monkeys' behavior improve."

Split-second influence

The prefrontal cortex orchestrates thoughts and actions in accordance with internal goals while the basal ganglia are associated with motor control, cognition and emotions. This work shows that these two brain areas, long suspected to play key roles in learning and memory, have full information available to them to do all the neural computations necessary for learning.

The prefrontal cortex and basal ganglia, extensively connected with each other and with the rest of the brain, are thought to help us learn abstract associations by generating brief neural signals when a response is correct or incorrect. But researchers never understood how this transient activity, which fades in less than a second, influenced actions that occurred later.

In this study, the researchers found activity in many neurons within both brain regions that reflected the delivery or withholding of a reward lasted for several seconds, until the next trial. Single neurons in both areas conveyed strong, sustained outcome information for four to six seconds, spanning the entire time frame between trials.

Response selectivity was stronger on a given trial if the previous trial had been rewarded and weaker if the previous trial was an error. This occurred whether the animal was just learning the association or was already good at it.

After a correct response, the electrical impulses coming from neurons in each of the brain areas was more robust and conveyed more information. "The signal-to-noise ratio improved in both brain regions," Miller said. "The heightened response led to them being more likely to get the next trial correct, too. This explains on a neural level why we seem to learn more from our successes than our failures."



Source: Eurekalert
RAS
Advertisement

Advertisement
Advertisement

Latest Research News

Tackling Football at Young Age: A Risk for Brain Decline Later
Injury to the white matter explains why football players are at an increased risk for cognitive and behavioral problems later in life.
Frozen Frontier: Humans Leave a Unique Microbial Mark on Mount Everest
Located at the South Col, the rocky area between Mount Everest and Lhotse serves as the final campsite for climbers as well as a frozen legacy of hardy microbes.
How Does Protein Synthesis in Diarrhea Causing Parasite Work?
The new finding is found to be valuable for screening specific medications and treatment against Giardia and other protozoan parasites.
Unlocking the Potential of CRISPR for Reversing Vision Loss
New CRISPR genome-editing strategy was found to have a positive impact in the treatment of inherited retinal diseases such as retinitis pigmentosa.
 New RT-qPCR Kit Detects Influenza, COVID-19
H3N2 Influenza: The newly developed RT-qPCR Kit to identify influenza, COVID-19 and respiratory virus has got approval from ICMR.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Differences in Learning from Success and Failure Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests