About My Health Careers Internship MedBlogs Contact us

Xenon can Reduce the Impact of Bomb Blast-Induced Brain Injury

by Megha Ramaviswanathan on February 16, 2018 at 11:58 AM
Font : A-A+

Xenon can Reduce the Impact of Bomb Blast-Induced Brain Injury

Commonly available inert gas xenon has been used for the first time to try and reduce the impact of Traumatic Brain Injuries (TBI) caused by bomb blasts in conflict zones and terror attacks, finds a new research by scientists at Imperial College London.

Traumatic brain injuries are frequently caused by blunt force trauma, but there has been an increase in TBIs caused by blasts (bTBIs). Blast TBI is one on the most common injuries experienced by soldiers in recent conflicts, and is dubbed a 'signature injury' of the conflicts in Iraq and Afghanistan. Civilians exposed to industrial accidents or terrorist attacks are also at risk.


Unlike blunt force trauma, where damage/injury is usually localized to one area of the brain, blasts create a shockwave that affects the whole brain - causing widespread damage. This can cause anxiety, depression, and problems with cognition, memory and sleep.

Previously, Dr Robert Dickinson and colleagues from Imperial College London showed that xenon gas helped limit brain damage and improve long term neurological outcomes in mice which had suffered blunt force brain injury.

Now, the same research group has found for the first time that xenon can also limit blast-induced brain injury from developing in mouse brain tissue exposed to a blast shockwave, in a study published in the Journal of Neurotrauma.

In this study, the scientists from Imperial's Department of Surgery and Cancer and the Royal British Legion Centre for Blast Injury Studies, applied xenon to slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs).

By using a dye that highlights damaged brain cells, they were able to monitor injury development in the slices up to three days after blast exposure. They compared slices given xenon treatment starting one hour after exposure to blast shockwaves, with slices exposed to blast without xenon treatment.

They then assessed injury development at 24, 48 and 72 hours after blast exposure, and found that the slices treated with xenon suffered significantly less blast-induced injury than the untreated control slices. The blast-injured slices treated with xenon were not significantly different to uninjured slices at 24 hours and 72 hours after injury, indicating that xenon prevented injury from developing.

Xenon reaches the brain within a few minutes after inhalation, so if these preliminary results translate to humans it could be a viable treatment option after blasts occur. Lead author Dr Rita Campos-Pires from Imperial said: "One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible."

Xenon is used in hospitals as a general anesthetic, so it is already known to be safe in humans. The authors say more research is needed before clinical trials in bTBI patients, but that their results are a positive step in this direction.

Dr Dickinson said: "Blast TBI has not been as widely studied as other types of brain trauma, but is now becoming recognized as a specific injury that can result in debilitating symptoms. Our discovery that xenon reduces blast-induced injury in mouse brain tissue is very encouraging, and will prompt further research in this area."

There is currently no standard treatment for bTBI. The authors say this preliminary research may be a first step before exploring xenon's benefits in humans who suffer bTBI. The next stage will be to test xenon in live rodents exposed to similar conditions.

Source: Eurekalert

News A-Z
News Category
What's New on Medindia
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
Long-Term Glycemic Control - A Better Measure of COVID-19 Severity
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Athletes Foot Parkinsons Disease Parkinsons Disease Surgical Treatment Head Injury Brain Brain Facts Aphasia Ataxia Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) 

Recommended Reading
Head Injury
Head injury or traumatic brain injury is a leading cause of disability among children and young ......
New Treatment for Mild Traumatic Brain Injury
Transcranial electrical stimulation to the brain aids in treating mild traumatic brain injury ......
New Treatment Shows Promise in Reducing Brain Injury in New-borns
New study identifies promising treatment to reduce or prevent brain injury after hypoxia-ischemia....
Incidence and Risk of Brain Injury Unknown in Mixed Martial Arts
Traumatic brain injury that occurs during mixed martial arts (MMA) are still unknown due to lack of ...
Aphasia is a condition where the patient has a language disorder. The patient has problems with comp...
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Athletes Foot
Athlete’s foot (tinea pedis/ringworm of the foot) is a fungal infection of the feet....
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use