Xenon, a readily available inert gas can limit brain damage caused by blasts in conflict zones and terror attacks, finds a new research.

‘Xenon gas found to reduce the brain injury caused by blasts in mouse which will soon become a greater benefit to humans.’

Unlike blunt force trauma, where damage/injury is usually localized to one area of the brain, blasts create a shockwave that affects the whole brain - causing widespread damage. This can cause anxiety, depression, and problems with cognition, memory and sleep. 




Previously, Dr Robert Dickinson and colleagues from Imperial College London showed that xenon gas helped limit brain damage and improve long term neurological outcomes in mice which had suffered blunt force brain injury.
Now, the same research group has found for the first time that xenon can also limit blast-induced brain injury from developing in mouse brain tissue exposed to a blast shockwave, in a study published in the Journal of Neurotrauma.
In this study, the scientists from Imperial's Department of Surgery and Cancer and the Royal British Legion Centre for Blast Injury Studies, applied xenon to slices of mouse brain tissue after exposing them to blast shockwaves that emulated those produced by improvised explosive devices (IEDs).
By using a dye that highlights damaged brain cells, they were able to monitor injury development in the slices up to three days after blast exposure. They compared slices given xenon treatment starting one hour after exposure to blast shockwaves, with slices exposed to blast without xenon treatment.
Advertisement
Xenon reaches the brain within a few minutes after inhalation, so if these preliminary results translate to humans it could be a viable treatment option after blasts occur. Lead author Dr Rita Campos-Pires from Imperial said: "One of the most insidious aspects of TBI in general, and it is believed bTBI also, is that the damage can continue to grow long after the initial injury. The secondary injury can be many times worse than the primary injury, so our goal is to stop the damage from spreading as early as possible."
Advertisement
Dr Dickinson said: "Blast TBI has not been as widely studied as other types of brain trauma, but is now becoming recognized as a specific injury that can result in debilitating symptoms. Our discovery that xenon reduces blast-induced injury in mouse brain tissue is very encouraging, and will prompt further research in this area."
There is currently no standard treatment for bTBI. The authors say this preliminary research may be a first step before exploring xenon's benefits in humans who suffer bTBI. The next stage will be to test xenon in live rodents exposed to similar conditions.
Source-Eurekalert