Medindia LOGIN REGISTER
Medindia

The Heart Can Be Repaired Using Stem Cell Device: Biogenerator

by Vani Pradeep on Jan 7 2015 3:08 PM

The Heart Can Be Repaired Using Stem Cell Device: Biogenerator
The creation of a new Biogenerator stem cell device will aid broken heart. The device has the ability to hold the stem cells produced from adult bone marrow cells. It can be affixed to the heart wall or using a catheter, it can be injected into the cardiac tissue.
New myocytes are produced with motivation got from release of proteins and growth factors straight in to the heart. Explanting the Biogenerator at any time can help removing the stem cells. The creator’s foresee that hearts damaged by infarcts have the option of functional treatment.

“Our nanofibrous scaffold will ensure that the therapeutic benefit provided by stem cells will be localized directly to the damaged area of the heart,” said NuVascular Technologies founder and Chief Technical Officer Matthew Phaneuf. “This scaffold will also prevent the cells from leaving the target area while permitting easy removal of the device, if required. We are confident that our devices can provide a minimally invasive, highly effective treatment for heart disease that can actually reverse the damage rather than providing a temporary solution that often comes with complications.”

Reports reveal that, in the US, heart failures affect more than a 5 million people. The cost incurred as a result totals to $39.2 billion per year. The most common heart disease reported till date is the coronary heart disease. This mostly causes permanent damage to a portion of the heart muscle. Also, the hearts ability to pump blood decreases. Heart muscles do not have the ability to proliferate and regenerate on their own nor do they have the ability to repair themselves. Though this may be the theory, recent medical sciences and research promises that the heart bears ability to regenerate.

“Our research has given every indication that these devices could be revolutionary in repairing heart damage and treating heart failure,” said Dr. Glenn Gaudette, Associate Professor, Department of Biomedical Engineering at WPI. He has also been working with BioSurfaces, Inc. on the discussed technology for over six years. “While cells contained in the scaffold of the nanofibrous material cannot escape, oxygen and molecules can move through the nanofibrous membrane to stimulate the cells within the damaged heart.”

Source-Medindia


Advertisement