
A new study claims that our mobile phone reflects our personal microbiome.
A new research which was focused on the personal microbiome - the collection of microorganisms on items regularly worn or carried by a person - demonstrates the significant microbiological connection we share with our phones.
Advertisement
University of Oregon researchers sequenced microbes from the dominant-hand index fingers and thumbs of 17 subjects and from the touchscreens of their smartphones, during a recent Robert Wood Johnson Foundation workshop in Princeton, New Jersey. The study found smartphones closely resembled the microbiome sampled from their owner's finger, with 82 percent of the most common bacteria on participants' fingers also found on their phones.
Interestingly, women were found to be more closely connected, microbiologically speaking, to their phones than were men. Although men and women were both statistically similar to their own phones, the relationship was stronger for women than for men.
The analyses, utilizing short-read 16S sequencing, focused on categorizing whole microbial communities rather than identifying pathogens. The findings emerged from sequences representing more than 7,000 different types of bacteria found in the 51 samples taken from fingers and phones.
Lead author James F said that the sample size of the research was small, but the findings were revealing.
Source: ANI
Advertisement
The analyses, utilizing short-read 16S sequencing, focused on categorizing whole microbial communities rather than identifying pathogens. The findings emerged from sequences representing more than 7,000 different types of bacteria found in the 51 samples taken from fingers and phones.
Lead author James F said that the sample size of the research was small, but the findings were revealing.
Source: ANI
Advertisement
Advertisement
|
Advertisement
Recommended Reading
Latest Research News

Decoding the eight factors affecting Black adults' life expectancy.

Sobering truth about foot travel in the United States emerges from international statistics, highlighting the prevalence of walking on the Blacksburg campus.

Unveiling a hidden mechanism, proteins within brain cells exhibit newfound abilities at synapses, reinforcing Darwin's theory of adaptation and diversity in the natural world.

Combining micro-needling and cupping, two emerging and alternative techniques, in an experimental study reveals a potential synergy for skin rejuvenation.

Despite a decline in COVID-19 cases, the World Health Organisation (WHO) raises global concerns by warning of an "inevitable" next pandemic known as "Disease X".