A new study made use of human induced pluripotent stem cells (iPSCs) transplanted into rats.

After Dr. Tuszynski and his colleagues converted the skin cells into iPSCs, which can be coaxed to develop into nearly any other cell type, the team reprogrammed the cells to become neurons, embedded them in a matrix containing growth factors, and then grafted them into 2-week-old spinal cord injuries in rats.
Three months later, the team found mature neurons and extensive nerve fiber growth across long distances in the rats' spinal cords, including through the wound tissue and even extending into the brain. Despite numerous connections between the implanted neurons and existing rat neurons, functional recovery of the animals' limbs was not restored. The investigators noted that several iPSC grafts contained scars that may have blocked beneficial effects.
Dr. Tuszynski, along with lead author Paul Lu, PhD, of the UC San Diego Department of Neurosciences, and their collaborators are now working to identify the best way to translate neural stem cell therapies for patients with spinal cord injuries, using grafts derived from the patients' own cells.
Source-Eurekalert
MEDINDIA



Email










