Olfactory neurons or smell nerve cells can fight influenza virus better compared to other cells. The olfactory cells activate a set of genes that attack the virus by halting its replication. The cells do not get destroyed themselves.
An array of smell nerve cells or olfactory receptors lining the nose act as the first defense line against the influenza virus. These cells work by upregulating the genes that stop the viral replication. Influenza researchers have long focused most of their efforts on the epithelial cells lining the lungs because these are the cells that become infected and killed while producing new copies of the virus.
‘The olfactory cells with smell nerve receptors get infected by the influenza virus but do not get destroyed. They help to activate certain genes that shut down viral replication.’
Read More..
But other cells lining the upper airways are exposed to viruses in the same amounts and somehow aren’t as likely to be killed by infection. Is it because of something the virus does, or something those cells do?
"So you’re standing on the bus, somebody sneezes, and you breathe something in," said Nicholas Heaton, an assistant professor of molecular genetics and microbiology in the Duke School of Medicine. "But where does that virus go? It’s certainly not somehow sneaking all the way down to the bottom of your lungs before it encounters a cell. It’s hitting somewhere in your nose."Read More..
In a paper appearing in Cell Reports, a collaboration between Heaton’s team and the laboratory of Ashley Moseman in Duke immunology reports on the remarkably robust immune response of olfactory sensory neurons, the smell receptors that line the nose, where a virus might first be encountered. Their finding reveals not only a successful strategy against infection, it points out the diversity of immune responses from one kind of cell to another, Heaton said.
Of all the cells in the nose, olfactory neurons pose a unique danger because they form a direct connection from the airway to the nervous system. Any virus gaining control of that cell potentially has a ticket to the brain and central nervous system. Infections of the brain and nervous system do happen in influenza, but they are usually associated with "bird" flu strains.
A few years ago, Heaton’s group published a paper that said some cells become infected by influenza and don’t die. "There’s this whole group of cells that get infected but do something different," he said. "So we felt like we should be studying those cells."
Heaton said his team wanted to focus on the body’s first contact with the virus in the sinuses and upper respiratory tract to see if there were differences in immune responses from one cell to another. They found that the olfactory cells did become infected, but were able to fight off the virus and avoid being destroyed by it.
Advertisement
"They upregulate genes that shut down viral replication," said Rebekah Dumm, a recent PhD graduate of Duke who worked on this project as part of her dissertation. This is the same set of antiviral genes used by the epithelial cells, "but the higher level to which they are induced was striking," Dumm said. "It’s surprising, because most of these genes were discovered and best described in the respiratory cells."
Advertisement
Heaton said his future work will continue to explore the immune response differences between cells. "You’re a person who’s been exposed to all kinds of stuff, you have your own particular exposure history that gives you different antibodies, different cell memory phenotypes, probably also different epithelial phenotypes, and we’d like to know what that means in terms of how you respond to secondary infections or these types of things."
Source-Eurekalert