'Princess Leia' brainwaves are responsible each night for forming associations between different aspects of a day's memories.

TOP INSIGHT
The 'Princess Leia' waves in the cortex are responsible each night for forming associations between different aspects of a day's memories.
"The scale and speed of Princess Leia waves in the cortex is unprecedented, a discovery that advances the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative," says Terrence Sejnowski, head of Salk's Computational Neurobiology Laboratory.
"For a long time, neuroscience researchers had to record activity at one point in the brain at a time and put many data points together without seeing the whole picture simultaneously," says Lyle Muller, a Salk research associate and first author of the new work. Scientists had long believed that each sleep spindle oscillation peaked at the same time everywhere in the neocortex of the brain.
Sejnowski and Muller wanted to see the broader picture, however, and turned to large-scale recordings, called intracranial electrocorticograms (ECoGs), that can measure activity in many areas of the brain at once. Patients with epilepsy often have ECoG arrays temporarily implanted in their brains to determine the location in the brain of epileptic seizures, so the scientists were able to study all the data collected from five such patients on healthy, seizure-free nights.
When they crunched the ECoG data from each night, the researchers were in for a surprise: the sleep spindles weren't peaking simultaneously everywhere in the cortex. Instead, the oscillations were sweeping in circular patterns around and around the neocortex, peaking in one area, and then - a few milliseconds later - an adjacent area.
Throughout the night, the researchers observed the same rotating patterns, each lasting about 70 milliseconds but repeating hundreds and hundreds of times over a matter of hours.
"If we understand how memories are being linked up like this in the brain, we could potentially come up with methods for disrupting memories after trauma," says Sejnowski. "There are also disorders including schizophrenia that affect sleep spindles, so this is really an interesting topic to keep studying."
Source-Eurekalert
MEDINDIA




Email








