Medindia LOGIN REGISTER
Medindia
Advertisement

Scientists Develop New Molecular Sensor That Detects Early Signs of Multiple Sclerosis

by Thilaka Ravi on December 4, 2013 at 9:26 PM
Scientists Develop New Molecular Sensor That Detects Early Signs of Multiple Sclerosis

Scientists at the Gladstone Institutes have devised a new molecular sensor that can detect Multiple Sclerosis (MS) at its earliest stages—even before the onset of physical signs.

For some, the disease multiple sclerosis attacks its victims slowly and progressively over a period of many years. For others, it strikes without warning in fits and starts. But all patients share one thing in common: the disease had long been present in their nervous systems, hiding under the radar from even the most sophisticated detection methods.

Advertisement

In a new study from the laboratory of Gladstone Investigator Katerina Akassoglou, PhD, scientists reveal in animal models that the heightened activity of a protein called thrombin in the brain could serve as an early indicator of MS. By developing a fluorescently labeled probe specifically designed to track thrombin, the team found that active thrombin could be detected at the earliest phases of MS—and that this active thrombin correlates with disease severity. These findings, reported online in Annals of Neurology, could spur the development of a much-needed early-detection method for this devastating disease.

MS, which afflicts millions of people worldwide, develops when the body's immune system attacks the protective myelin sheath that surrounds nerve cells. This attack damages the nerve cells, leading to a host of symptoms that include numbness, fatigue, difficulty walking, paralysis and loss of vision. While some drugs can delay these symptoms, they do not treat the disease's underlying causes—causes that researchers are only just beginning to understand.
Advertisement

Last year, Dr. Akassoglou and her team found that a key step in the progression of MS is the disruption of the blood brain barrier (BBB). This barrier physically separates the brain from the blood circulation and if it breaks down, a blood protein called fibrinogen seeps into the brain. When this happens, thrombin responds by converting fibrinogen into fibrin—a protein that should normally not be present in the brain. As fibrin builds up in the brain, it triggers an immune response that leads to the degradation of the nerve cells' myelin sheath, over time contributing to the progression of MS.

"We already knew that the buildup of fibrin appears early in the development of MS—both in animal models and in human patients, so we wondered whether thrombin activity could in turn serve as an early marker of disease." said Dr. Akassoglou, who directs the Gladstone Center for In Vivo Imaging Research (CIVIR). She is also a professor of neurology at the University of California, San Francisco, with which Gladstone is affiliated. "In fact, we were able to detect thrombin activity even in our animal models—before they exhibited any of the disease's neurological signs."



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

South Korea's 2050 Forecast: Negative Growth Amid Low Fertility
South Korea's total fertility rate, averaging the number of children a woman aged 15-49 has in her lifetime, dropped to 0.81.
New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
Gene Therapies Can Disrupt Gaucher Disease Drug Market
Experts consulted by GlobalData anticipate a significant overhaul in the Gaucher disease scenario because of forthcoming gene therapies in development.
NASH Cases Expected to Hit 26.55 Million in 7MM by 2032
Within the seven major markets, 12% to 20% of diagnosed prevalent NASH cases present severe liver damage (stage 4 liver fibrosis), denoting cirrhosis.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Scientists Develop New Molecular Sensor That Detects Early Signs of Multiple Sclerosis Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests