About Careers Internship MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Scientists Develop New Material That Improves Wound Healing, Keeps Bacteria from Sticking

by Dr. Enozia Vakil on June 27, 2014 at 5:34 PM
 Scientists Develop New Material That Improves Wound Healing, Keeps Bacteria from Sticking

Treating wounds has now become more sophisticated than sewing stitches and applying gauze, however, dressings still have certain shortcoming. Now scientists are reporting the next step in the evolution of wound treatment with a material that leads to faster healing than existing commercial dressings and prevents potentially harmful bacteria from sticking. Their study appears in the journal ACS Applied Materials & Interfaces.

Yung Chang and colleagues note that the need for improved dressings is becoming urgent as the global population ages. With it, health care providers will see more patients with bed sores and associated chronic skin wounds. An ideal dressing would speed up healing in addition to protecting a wound from bacterial infection. But current options fall short in one way or another. Hydrogels provide a damp environment to promote healing, but they don't allow a wound to "breathe." Dry films with tiny pores allow air to move in and out, but blood cells and bacteria can stick to the films and threaten the healing process. To solve these problems all at once, Chang's team looked to new materials.

Advertisement

They took a porous dry film and attached a mix of structures called zwitterions, which have been used successfully to prevent bacteria stickiness in blood filtering and other applications. The resulting material was slick to cells and bacteria, and it kept a moist environment, allowed the wound to breathe and encouraged healing. When the scientists tested it on mice, their wounds healed completely within two weeks, which is faster than with commercial dressings.
Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Brain Circuits That Shape Bedtime Rituals in Mice
New study sheds light on the intrinsic, yet often overlooked, role of sleep preparation as a hardwired survival strategy.
NELL-1 Protein Aids to Reduce Bone Loss in Astronauts
Microgravity-induced bone loss in space, can be reduced by systemic delivery of NELL-1, a protein required for bone growth and its maintenance.
Connecting Genetic Variants to the Alzheimer's Puzzle
Researchers establish connections between Alzheimer's-linked genetic alterations and the functioning of brain cells.
Gene Therapy Sparks Spinal Cord Regeneration
Team at NeuroRestore introduces a groundbreaking gene therapy that has effectively promoted nerve regrowth and reconnection, post spinal cord injury.
Unlocking the Gut Microbiome's Influence on Bone Density
Scientists aim to pinpoint particular functional pathways affected by these bacteria that may have an impact on skeletal health.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
MediBotMediBot
Greetings! How can I assist you?MediBot
×

Scientists Develop New Material That Improves Wound Healing, Keeps Bacteria from Sticking Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests