About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Role of Neuroendocrine System in Postpartum Depression Found

by Chrisy Ngilneii on December 27, 2017 at 12:16 PM
Font : A-A+

Role of Neuroendocrine System in Postpartum Depression Found

The role of neuroendocrine system in postpartum depression has been identified.

The involvement of the neuroendocrine system that mediates the physiological response to stress, called the hypothalamic-pituitary-adrenal (HPA) axis, which is normally suppressed during and after pregnancy, has been demonstrated by Neuroscientists at Tufts University School of Medicine.

Advertisement


The findings in mice provide the first empirical evidence that disruption of this system engenders behaviors that mimic postpartum depression in humans.

This provides a much-needed research model for further investigation into the causes of and treatment for postpartum depression, which has largely relied on correlational studies in humans because of the scarcity of animal models.
Advertisement

Stress is known to activate the HPA axis, which triggers the fight or flight response seen in many species. During and after pregnancy such activation is normally blunted - helping to insulate developing offspring from stress - and dysregulation of the HPA axis has been suggested as playing a role in the physiology of postpartum depression.

The effects of stress on postpartum behavior are thought to be mediated by stress hormones because animal experiments show that stress and exogenous stress hormones can induce abnormal postpartum behaviors. However, clinical data on stress hormones in women with postpartum depression has been inconsistent. To date, research has not directly demonstrated a role for corticotropin-releasing hormone (CRH), the main driver of the stress response, which is primarily secreted by a cluster of neurons in the hypothalamus called the paraventricular nucleus (PVN), or for inappropriate activation of the HPA axis in postpartum depression.

"Some clinical studies show a relationship between CRH, HPA axis function and postpartum depression, but others fail to replicate these findings. Direct investigation into this relationship has been hindered due to the lack of useful animal models of such a complex disorder," said Jamie Maguire, Ph.D., corresponding author on the new study, assistant professor in the Department of Neuroscience at Tufts University School of Medicine, and a member of the Neuroscience and Pharmacology & Experimental Therapeutics program faculties at Tufts' Sackler School of Graduate Biomedical Sciences.

"Using a mouse model that we developed, our new study provides the first empirical evidence supporting the clinical observations of HPA axis dysfunction in patients with postpartum depression and shows for the first time that dysregulation of the HPA axis and a specific protein in the brain, KCC2, can be enough to induce postpartum depression-like behaviors and deficits in maternal care," she continued.

Maguire's lab had previously shown a critical role for KCC2 in regulating CRH neurons and the physiological response to stress. The recent study investigated the specific role of KCC2 in regulating the HPA axis during and after pregnancy. Maguire and her colleagues assessed KCC2 expression in the PVN in virgin, pregnant and postpartum mice.

They observed suppression (downregulation) of KCC2 in virgin mice exposed to stress but not in pregnant or postpartum mice. They propose that this contributes to the protective HPA hypofunction prior to birth, which is consistent with lower glucocorticoid levels observed in pregnant and postpartum mice and similar to findings in humans.

To further test the role of KCC2, the researchers developed mice that completely lacked KCC2 in CRH neurons and compared HPA axis function in these "knockout" mice with their normal (wildtype) littermates. Knockout mice demonstrated significantly more stress reactivity during the peripartum period, did not show the reduced anxiety typical of the postpartum period, and exhibited abnormal maternal care compared with postpartum wildtype mice. Utilizing novel chemogenetic strategies to specifically activate or silence the CRH neurons in the PVN, researchers were able to pinpoint these abnormal behaviors to the activity of these specific neurons, which govern the HPA axis.

"Pregnancy obviously involves great changes to a woman's body, but we're only now beginning to understand the significant unseen adaptations occurring at the neurochemical and circuitry level that may be important to maintaining mental health and maternal behavior in the first few weeks to months following delivery," said Laverne Camille Melón, Ph.D., first author on the paper.

By uncovering the role for stability of KCC2 in the regulation of CRH neurons, the postpartum stress axis, and maternal behavior, we hope we have identified a potential molecular target for the development of a new class of compounds that are more effective for women suffering from postpartum depression and anxiety.

Melón and Maguire do not believe that HPA axis dysfunction is the only pathological mechanism at work. "Many psychiatric and neurological disorders are a constellation of symptoms and represent an unfortunate synergy of heterogeneous maladaptations. The mechanisms underlying one woman's postpartum depression may differ from another's," said Melón.

The researchers hope that continued work will enable them to identify a biological marker that characterizes women who may be vulnerable to postpartum depression because of dysregulation of the stress axis, potentially leading to new treatment options.

"There is much more we need to learn," said Maguire, "but we believe our model will be useful for testing novel therapeutic compounds for postpartum depression. Such studies could also be relevant to other conditions in which KCC2 deficits are implicated, such as epilepsy, chronic pain and autism, and to other stress and anxiety related disorders."

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Menstrual Disorders
Coffee May Help You Fight Endometrial Cancer
Fermented Skin Care
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Adolescence Depression Depression Stress Relief Through Alternative Medicine Andropause / Male Menopause Pregnancy and Complications Bereavement Holistic Management for Depression Tourette Syndrome Dealing with Menopause symptoms through lifestyle changes Tired All The Time 

Recommended Reading
Postpartum Psychosis
What is Postpartum Psychosis? Find the facts of Puerperal (postpartum) psychosis including ......
Depression Symptom Evaluation
Depression occurs due to alterations in the levels of neurotransmitters in the brain. ...
Depression
Depression is one of the most common mental disorders affecting approximately 340 million people in ...
Generalized Anxiety Disorder
Generalized anxiety disorder refers to excessive and irrational worries about daily activities and ....
Andropause / Male Menopause
Andropause or male menopause causing low libido in a man is due to decreasing level of male hormones...
Bereavement
Bereavement refers to grief, pain and sadness following the loss of a loved one, especially during t...
Dealing with Menopause symptoms through lifestyle changes
You can deal with menopause symptoms such as hot flashes, weight gain and forgetfulness by making si...
Holistic Management for Depression
Depression is a common disorder and many worldwide suffer from depression. Early recognition of symp...
Pregnancy and Complications
In-depth guide for expecting mothers to overcome health complications related to early or late pregn...
Tired All The Time
Tired All The Time (TATT) syndrome is not only about feeling of tired, however there are a host of o...
Tourette Syndrome
Tourette syndrome (TS) is a neurological disorder wherein the affected person makes repetitive and s...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2022

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use
open close
ASK A DOCTOR ONLINE
I have read and I do accept terms of use - Telemedicine

Advantage Medindia: FREE subscription for 'Personalised Health & Wellness website with consultation' (Value Rs.300/-)