About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

RNA Interference Enables Reversible Gene Silencing

by Bidita Debnath on December 18, 2013 at 11:27 PM
Font : A-A+

 RNA Interference Enables Reversible Gene Silencing

RNA interference (RNAi) has become an indispensable tool for functional genetic studies over the last decades by harnessing the power of a cell intrinsic mechanism enabling reversible gene silencing.

Indeed, gene silencing can mirror gene loss during disease progression or mimic pharmacological target inhibition even where no such drug currently exists. In both cultured cells and animals, RNAi thus promises to rapidly advance our understanding of disease and search for new therapies. However,the design of potent and specific RNAitriggersis nottrivial, limiting the practical potential of RNAiforresearch and clinicalsettings.

Advertisement

Evolution driven design Christof Fellmann, Johannes Zuber and coworkers at Cold Spring Harbor Laboratory (CSHL), USA, came up with strategies to improve RNAi technology when both were still working there. "The molecular underpinnings of efficient gene silencing are yet to be fully understood. Potent RNAi triggers are rare and have to be identified among hundreds to thousands of possibilities for each gene.

To advance current techniques, we looked at the evolutionary conservation of natural RNAi triggers to build enhanced synthetic analogues", Fellmann describes their approach. He continued to evolve this concept at Mirimus, a spin-off company from CSHL, while Zuber went on to found his own lab at the IMP, Austria. One particularly powerful RNAi method pioneered among others by Gregory Hannon and Scott Lowe at CSHL relies on embedding synthetic short hairpin RNA (shRNA) sequences into naturally occurring microRNA backbones. The resulting RNA molecules mimic natural triggers and are processed by cell intrinsic pathways. Yet, the efficiency of current reagents designed in this manner remains limited.
Advertisement

Fellmann and his team analyzed a specific microRNA backbone across various species, including opossum, chicken, elephant, rat and human, to identify sequence motifs that remain unchanged, indicating possible functional importance. The researchers then found that some of these sequences had been modified in one of the most commonly used synthetic RNAi backbones. By inverting these sequence regions back to their natural form and establishing a new shRNA backbone termed "miR-E", Fellmann and his team succeeded in greatly enhancing the efficiency of synthetic RNAi tools.

Realizing the full potential of RNAi "This advancement is highly relevant to reduce to practice the great promise of RNAi for drug discovery and biomedical research", Fellmann summarizes. While current methods require laborious and lengthy testing of many predictions to find an RNAi trigger that is sufficiently potent, the optimized "miR-E" backbone drastically increases the success rate through better processing of the precursor molecules.

Importantly, the new miR-E backbone can easily be integrated into current technologies to improve high-throughput RNAi screens and RNAi-based mouse models of human disease. Looking forward, Fellmann's study will open a promising avenue for generating focused and genome-wide shRNA libraries that will truly cover each gene with multiple effective shRNAs and constitute a validated and versatile tool for high-throughput functional genetics in the post-genomic era.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Breast Cancer Awareness Month 2021 - It's time to RISE
First-Ever Successful Pig-To-Human Kidney Transplantation
World Osteoporosis Day 2021 -
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Weaver Syndrome 

Recommended Reading
Single MicroRNA Regulates Motor Activity
New research shows that microRNA-128 is one of the strongest regulators of nerve cell excitability ....
In ALS Disease Silent RNAs Express Themselves When Stowed In Cytoplasmic Granules
RNA molecules are used by cells to make proteins. They are generally thought to be "silent" when ......
Link Between Surname and Health Identified
A person's surname might influence their health, finds research conducted by Dublin researchers....
Dialysis Risk for Patients With Advanced Kidney Disease Lowered by Antihypertensives
Treatment with the antihypertensive drugs known as ACEIs or ARBs appeared to lower the risk of ......
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use