About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Physiological Function of Key Cancer Gene may Help Cancer Therapy

by Anjali Aryamvally on October 22, 2017 at 11:12 AM
Font : A-A+

Physiological Function of Key Cancer Gene may Help Cancer Therapy

Research sheds light on the physiological role of a key cancer gene, PTEN. A collaboration between research teams at the Babraham Institute, Cambridge and the AstraZeneca IMED Biotech Unit reveals how the PTEN gene may control cell growth and behaviour. The study also shows how the loss of PTEN could contribute to the development and advancement of certain cancers.

The PTEN gene

Advertisement


PTEN is reportedly the second most commonly altered gene in human cancers. The study, led by Dr Len Stephens and Dr Phill Hawkins and published in the journal Molecular Cell, reveals why loss of the PTEN gene has such an impact on many people with prostate cancer, as well as in some breast cancers. These results, which also include work from Akita University, Japan, and contributions from GSK could help to identify patients likely to benefit from novel targeted therapies.

PTEN is known as a tumour suppressor gene meaning that it typically slows the growth of cells and its loss can lead to cancer. By regulating the levels of the chemical phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), PTEN helps to limit cell growth and so prevents cancer.
Advertisement

New revelation

Yet, the new paper shows that this is only part of the story. The team at the Institute, supported by GSK and together with AstraZeneca have identified another way that PTEN may prevent uncontrolled cell growth. PTEN can also reduce the levels of another similar molecule known as phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2). The role of PI(3,4)P2 is still becoming clear but it may be able to alter the activity of the AKT protein, a key regulator of cell growth. PI(3,4)P2 may also influence several other proteins that regulate the process of invasion; how cancer cells spread and move through the body.

Speaking about the research, Dr Hawkins said: "We were really surprised that loss of PTEN caused such a dramatic increase in PI(3,4)P2 in our mouse model of prostate cancer. PI(3,4)P2 has generally been a bit of an enigma and many thought it was just a by-product of PI(3,4,5)P3. Our work suggests that studying PI(3,4)P2-regulated processes may reveal why PTEN is such a powerful tumour suppressor and may also help us to identify new therapeutic targets in PTEN-mutated cancers."

"Over 40% of prostate cancers lose PTEN and some lose both PTEN and another tumour suppressor gene, INPP4B, but we didn't previously have a clear picture of how this affects tumour growth," says IMED Biotech Unit scientist Sabina Cosulich, at AstraZeneca. "The new discovery has given us an important link between the biochemical function of PTEN and its role in prostate cancer, and in some triple negative breast tumours for which treatment is currently limited."

By studying human cancer cells and animal models of cancer in the lab, our researchers have shown that loss of PTEN leads to high levels of PI(3,4)P2, which could result in hyperactivation of AKT. This may indicate AKT as an effective target for new cancer treatments. AstraZeneca's AKT inhibitor is currently in clinical trials for prostate, breast and other cancers. This collaboration could help to devise tests to identify patients who will benefit from these targeted therapies.

Dr Cosulich concludes: "Having such an open collaboration was essential for addressing a scientific puzzle of great significance to cancer research. Our team members are in regular contact and frequently work alongside each other. Hearing about the lipid biochemistry research from the Babraham Institute team and realising how we could translate its potential from an oncology perspective was a great moment for all of us!"



Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
International Day of Persons with Disabilities 2021 - Fighting for Rights in the Post-COVID Era
Effect of Blood Group Type on COVID-19 Risk and Severity
Woman with Rare Spinal Cord Defect from Birth Sues Doctor
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
DNA Finger Printing Cancer and Homeopathy Reiki and Pranic Healing Cancer Facts Cancer Tattoos A Body Art Weaver Syndrome Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment 

Recommended Reading
Gene Mutations can Cause Obesity and Constitutive Insulin Sensitivity
Diabetes type 2 occurs when body does not produce enough insulin to control glucose level in the ......
PTEN, the Tumor Suppressor protein, Puts a Break on Autoimmune Diseases
The tumor suppressor protein PTEN is essential for proper functioning of regulatory T cells, has a ....
Scientists Identify New Type of Gene That Regulates Tumor Suppressor PTEN
A new so-called pseudogene that regulates the tumour-suppressing PTEN gene has been discovered by .....
Fertility Boost Possible by 'Waking Up Sleeping Eggs
Female mammals are born with millions of dormant eggs, but only a small fraction ever mature .....
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
DNA Finger Printing
DNA fingerprinting is a technique which helps forensic scientists and legal experts solve crimes, id...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...
Weaver Syndrome
Weaver syndrome is a genetic disorder in which children show accelerated bone growth, advanced bone ...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use