Medindia LOGIN REGISTER
Medindia
Advertisement

Physiological Function of Key Cancer Gene may Help Cancer Therapy

by Anjali Aryamvally on October 22, 2017 at 11:12 AM
Physiological Function of Key Cancer Gene may Help Cancer Therapy

Research sheds light on the physiological role of a key cancer gene, PTEN. A collaboration between research teams at the Babraham Institute, Cambridge and the AstraZeneca IMED Biotech Unit reveals how the PTEN gene may control cell growth and behaviour. The study also shows how the loss of PTEN could contribute to the development and advancement of certain cancers.

The PTEN gene

Advertisement


PTEN is reportedly the second most commonly altered gene in human cancers. The study, led by Dr Len Stephens and Dr Phill Hawkins and published in the journal Molecular Cell, reveals why loss of the PTEN gene has such an impact on many people with prostate cancer, as well as in some breast cancers. These results, which also include work from Akita University, Japan, and contributions from GSK could help to identify patients likely to benefit from novel targeted therapies.

PTEN is known as a tumour suppressor gene meaning that it typically slows the growth of cells and its loss can lead to cancer. By regulating the levels of the chemical phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3), PTEN helps to limit cell growth and so prevents cancer.
Advertisement

New revelation

Yet, the new paper shows that this is only part of the story. The team at the Institute, supported by GSK and together with AstraZeneca have identified another way that PTEN may prevent uncontrolled cell growth. PTEN can also reduce the levels of another similar molecule known as phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2). The role of PI(3,4)P2 is still becoming clear but it may be able to alter the activity of the AKT protein, a key regulator of cell growth. PI(3,4)P2 may also influence several other proteins that regulate the process of invasion; how cancer cells spread and move through the body.

Speaking about the research, Dr Hawkins said: "We were really surprised that loss of PTEN caused such a dramatic increase in PI(3,4)P2 in our mouse model of prostate cancer. PI(3,4)P2 has generally been a bit of an enigma and many thought it was just a by-product of PI(3,4,5)P3. Our work suggests that studying PI(3,4)P2-regulated processes may reveal why PTEN is such a powerful tumour suppressor and may also help us to identify new therapeutic targets in PTEN-mutated cancers."

"Over 40% of prostate cancers lose PTEN and some lose both PTEN and another tumour suppressor gene, INPP4B, but we didn't previously have a clear picture of how this affects tumour growth," says IMED Biotech Unit scientist Sabina Cosulich, at AstraZeneca. "The new discovery has given us an important link between the biochemical function of PTEN and its role in prostate cancer, and in some triple negative breast tumours for which treatment is currently limited."

By studying human cancer cells and animal models of cancer in the lab, our researchers have shown that loss of PTEN leads to high levels of PI(3,4)P2, which could result in hyperactivation of AKT. This may indicate AKT as an effective target for new cancer treatments. AstraZeneca's AKT inhibitor is currently in clinical trials for prostate, breast and other cancers. This collaboration could help to devise tests to identify patients who will benefit from these targeted therapies.

Dr Cosulich concludes: "Having such an open collaboration was essential for addressing a scientific puzzle of great significance to cancer research. Our team members are in regular contact and frequently work alongside each other. Hearing about the lipid biochemistry research from the Babraham Institute team and realising how we could translate its potential from an oncology perspective was a great moment for all of us!"



Source: Eurekalert
Font : A-A+

Advertisement

Advertisement
Advertisement

Recommended Readings

Latest Research News

Could Light Therapy Be a Breakthrough for Alzheimer's?
Light therapy enhances sleep and psycho-behavioral symptoms in Alzheimer's patients with minimal side effects.
Does Twice Daily Stimulation Enhance Alzheimer's Mental Functions?
Electrical stimulation improves Alzheimer's patients' cognitive function and correlates with restored cortical plasticity.
South Korea's 2050 Forecast: Negative Growth Amid Low Fertility
South Korea's total fertility rate, averaging the number of children a woman aged 15-49 has in her lifetime, dropped to 0.81.
New Immunotherapy for Psoriasis & Vitiligo
Scientists identified mechanisms governing immune cells, selectively removing troublemakers to reshape skin immunity. Benefits those with psoriasis, vitiligo.
2050 Forecast: 1.06 Billion Individuals to Face 'Other' Musculoskeletal Disorders
By 2050, an anticipated increase from 494 million cases in 2020 to 1.06 billion people with musculoskeletal disabilities is expected.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Physiological Function of Key Cancer Gene may Help Cancer Therapy Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests