
The neural activity has been simulated based on the unique structural architecture of individual brain tumor patients using a platform called The Virtual Brain, revealed researchers.
The Virtual Brain could improve surgical planning and outcomes. The findings are reported in eNeuro.
Advertisement
‘Virtual brain could be used to predict the effects of tumors and consequent surgery on brain function.’
Tweet it Now
Brain surgery is delicate work that requires careful planning to maximally remove a tumor while leaving the surrounding tissue intact. Common techniques such as functional magnetic resonance imaging (fMRI) are used to map out a surgical strategy by identifying important functional areas close to the tumor. These approaches are limited, however, in their ability to predict post-surgical outcome because of the complex dynamics of the brain and the widespread modifications of brain activity.
Using the open-source software The Virtual Brain, Hannelore Aerts and a team led by Daniele Marinazzo modeled 25 individual brain networks of brain tumor patients and 11 of their partners as a control group. The researchers demonstrated that these individualized models can accurately predict the effects of the tumors on brain connectivity. This result opens the possibility of integrating neuroimaging data with virtual brain modeling to improve surgical planning and outcomes.
Source: Eurekalert
Source: Eurekalert
Advertisement
Advertisement
|
Advertisement
Recommended Reading
Latest Research News

Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.

A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.

Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.

Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.

Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.