New algorithm that predicts potentially dangerous low blood pressure, or hypotension, that can occur during surgery has been developed.

‘New algorithm that predicts potentially dangerous low blood pressure, or hypotension, that can occur during surgery has been developed.’

Serious complications can develop quickly, and the risk of serious complications increases the longer a patient remains hypotensive. Advance warning that hypotension is imminent, even if the warning comes only 10 to 15 minutes ahead, could reduce the risk of harm to patients, the authors note. 




In the study, researchers used a technique called machine learning, a discipline within computer sciences that focuses on the application of algorithms to provide computers with the ability to learn and detect patterns associated with a specific outcome in large datasets. The algorithm was developed to observe subtle signs in routinely collected physiological data that could predict the onset of hypotension in surgical patients.
The researchers used two sets of data to build and validate the predictive algorithm. One data set, used for training, consisted of 1,334 patient records with 545,959 minutes of arterial pressure waveform recordings--recordings of the increase and decrease of blood pressure in the arteries during a heartbeat. That data set included 25,461 episodes of hypotension. A second data set, used for external validation of the model, consisted of 204 patient records with 33,236 minutes of arterial pressure waveform recordings and 1,923 episodes of hypotension.
For each heartbeat, the scientists were able to extract 3,022 individual features from the arterial pressure waveforms. When combined, these features yielded more than 2.6 million bits of information used to build the algorithm. The authors found the algorithm was able to accurately predict an intraoperative hypotensive event 15 minutes before it occurred in 84 percent of cases, 10 minutes before in 84 percent of cases, and 5 minutes before in 87 percent of cases.
"We are using machine learning to identify which of these individual features, when they happen together and at the same time, predict hypotension," Dr. Cannesson said. "The statistical association between these features and the occurrence of hypotension is fascinating because we can potentially reverse engineer this statistical association and augment our understanding of this complex physiological phenomenon."
Advertisement
"It is the first time machine learning and computer science techniques have been applied to complex physiological signals obtained during surgery," Dr. Cannesson said. "Although future studies are needed to evaluate the real-time value of such algorithms in a broader set of clinical conditions and patients, our research opens the door to the application of these techniques to many other physiological signals, such as EKG for cardiac arrhythmia prediction or EEG for brain function. It could lead to a whole new field of investigation in clinical and physiological sciences and reshape our understanding of human physiology."
Advertisement