About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Loss of Brain Synchrony may Explain Working Memory Limits

by Colleen Fleiss on April 29, 2018 at 1:56 AM
Font : A-A+

Loss of Brain Synchrony may Explain Working Memory Limits

Understanding brain signals at peak load can help us understand the origins of cognitive impairments. The new finding could lead to new therapeutic approaches for people in need, like schizophrenics, revealed researchers.

A new study from City, University of London and MIT may have revealed the reasons behind our memory limitations. The results of a new study published in the journal Cerebral Cortex, may explain why: The authors suggest that the 'coupling', or synchrony, of brain waves among three key regions breaks down in specific ways when visual working memory load becomes too much to handle. This loss of synchrony means the regions can no longer communicate with each other to sustain working memory.

Advertisement


Maximum working memory capacity - for instance the total number of images a person can hold in working memory at the same time - varies between individuals but averages about seven. This new study tries to understand what causes the memory to have this intrinsic limit. The study's lead author, Dr Dimitris Pinotsis, a lecturer at the Department of Psychology at City, University of London, and a research affiliate at the Department of Brain and Cognitive Sciences at MIT, said: "At peak memory capacity, the brain signals that maintain memories and guide actions based on these memories, reach their maximum. Above this peak, the same signals break down."

As researchers have previously correlated working memory capacity with intelligence, understanding what causes working memory to have an intrinsic limit is important because it could also help explain the limited nature of conscious thought and how it might break down in diseases. "Because certain psychiatric diseases can lower capacity, the findings could explain more about how such diseases interfere with thinking," said Professor Earl Miller, the study's senior author and the Picower Professor of Neuroscience at MIT's Picower Institute for Learning and Memory. The study's other author is Dr Timothy Buschman, assistant professor at the Princeton University Neuroscience Institute.
Advertisement

To investigate working memory limits, the researchers carried out a detailed statistical analysis of data when animal subjects played a simple game. They had to spot the difference when they were shown a set of squares on a screen and then, after a brief blank screen, a nearly identical set in which one square had changed colour. The number of squares involved, hence the working memory load of each round, varied so that sometimes the task exceeded the animals' capacity. As the animals played, the researchers measured the frequency and timing of brain waves produced by ensembles of neurons in three regions presumed to have an important - though as yet unknown - relationship in producing visual working memory: the prefrontal cortex (PFC), the frontal eye fields (FEF), and the lateral intraparietal area (LIP).

Using sophisticated mathematical techniques, they found that the regions essentially work as a committee, without much hierarchy, to keep working memory going. They also found changes as working memory approached and then exceeded capacity. In particular, the researchers found that above capacity the PFC's coupling to the FEF and LIP at low frequency stopped. As previous studies have suggested that the PFC's role might be to employ low-frequency waves to provide the feedback the keeps the working memory system in sync, the researchers suggest that when that signal breaks down, the whole enterprise may as well. This observation may also explain why memory capacity has a finite limit.

Professor Miller said: "We knew that stimulus load degrades stimulus processing in various brain areas, but we hadn't seen any distinct change that correlated with reaching capacity, but we did see this with feedback coupling. It drops off when the subjects exceeded their capacity. The PFC stops providing feedback coupling to the FEF and LIP." The findings could also help optimise heads-up displays in cars and to develop diagnostic tests for diseases like schizophrenia and dementia, among other applications.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
News Category
What's New on Medindia
Breast Cancer Awareness Month 2021 - It's time to RISE
First-Ever Successful Pig-To-Human Kidney Transplantation
World Osteoporosis Day 2021 -
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Parkinsons Disease Parkinsons Disease Surgical Treatment Brain Brain Facts Ataxia Brain Exercises to Improve Memory Foods to Improve Memory Power Language Areas in The Brain Ways to Improve your Intelligence Quotient (IQ) Quick and Easy Ways to Memorize Things 

Recommended Reading
Estradiol Therapy After Menopause Relieves Effects of Stress on Working Memory
Hormone replacement therapy may be beneficial in some women as it lowers stress and its effects on ....
Quiz on Schizophrenia
Schizophrenia is a mental disorder that affects young adults; nearly 7% of the adult population ......
Dementia
Dementia has become a very big concern as we have an aging population across the world. Dementia is ...
Brilliant Human Brain - Animation
The most amazing and complex organ in the entire universe, the human brain continues to remain an .....
Ataxia
Ataxia affects coordination. Gait becomes unstable and the patient loses balance. The cerebellum or ...
Brain Exercises to Improve Memory
An active brain can certainly help in improving memory by strengthening the connections between neur...
Foods to Improve Memory Power
Eating healthy nutritious foods can help improve memory power and prevent brain-related illness. Eat...
Language Areas in The Brain
The mechanism of how human brain processes the language to express and comprehend the verbal, writte...
Parkinsons Disease
Parkinson’s disease is a neurodegenerative disease caused by progressive dopamine brain cells loss. ...
Quick and Easy Ways to Memorize Things
You can train your brain to memorize things faster. If you’re thinking about how to train the brain,...
Ways to Improve your Intelligence Quotient (IQ)
Intelligence quotient (IQ) is a psychological measure of human intelligence. Regular physical and me...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use