About My Health Careers Internship MedBlogs Contact us
Medindia LOGIN REGISTER
Advertisement

Inhibiting Enzymes in the Cell may Prevent Cancer Cell Division and Growth

by Bidita Debnath on April 28, 2013 at 11:37 PM
Font : A-A+

 Inhibiting Enzymes in the Cell may Prevent Cancer Cell Division and Growth

According to researchers at the Graduate School of Biomedical Sciences at the Icahn School of Medicine at Mount Sinai, blocking certain enzymes in the cell may prevent cancer cell division and growth.

The discovery is published in the April 25, 2013 issue of the journal Molecular Cell.

Advertisement

In order to divide, a cell needs to create copies of its genetic material to provide to the new cells, called the "daughter" cells. Several enzymes in the cells, called cyclin dependent kinases (CDKs), act as the traffic cops for this process, making sure that DNA is copied correctly and determining when the cell should move into the next stage of division. Each CDK has a different responsibility during cell division. For example, CDK1 promotes the segregation of DNA into the new daughter cells; CDK4 and 6 act on a tumor suppressor gene; and CDK7 plays an important role in DNA transcription into RNA.

When the cell reaches a stage called the "restriction point," it has passed the threshold where division can be safely stopped—the point of no return. For years, scientists have been working to inhibit the activity of these CDK enzymes in cancer cells before they reach the restriction point, so that that cell division stops and cancer cannot proliferate.
Advertisement

Led by Robert Fisher, MD, PhD, Associate Professor of Structural and Chemical Biology at Mount Sinai, the research team evaluated human colon cancer cells in a petri dish to assess the activity of CDKs. Previous research had shown that CDK7 was a critical enzyme in cell division, but the team wanted to learn how its activity influenced other CDKs; specifically, CDK4 and CDK6, two critical enzymes that act prior to the restriction point and whose regulation is not completely understood.

"While we know that CDK7 plays an essential role in all cells, its precise activity and specific targets in the cell remained unclear," said Dr. Fisher. "CDK4 and CDK6 have also been elusive targets in our research, and we wanted to learn how CDK7 affected them."

Turning off CDK4 and CDK6 has been shown to be effective in blocking division of some cancer cells and is currently being tested in clinical trials. The new study suggests that turning off CDK7 might be equally or more effective, making all three enzymes viable therapeutic targets for the prevention of cancer cell proliferation. Taking advantage of a unique method they developed to control CDK activity in human cells, the research team found that when they "turned off" the activity of CDK7, CDK4 and CDK6 were also inactivated rapidly. This makes sense, because CDK7 is able to activate both CDK4 and CDK6 in the test tube, enabling them to modify a key tumor suppressor protein, which is thought to be how they promote cancer cell growth and division.

"These findings complete the story of CDK activation in human cells, in which one CDK is capable of activating others," said Dr. Fisher. "Now, we want to evaluate what signaling pathway earlier in the cell division process leads to CDK7 activation, so that it can in turn activate CDK4 and CDK6. This pathway may be an important therapeutic target for cancer, and possibly other diseases as well."

Next, Dr. Fisher and his team plan to find out what is happening upstream, or earlier, in the cell division process that turns up the activity of CDK7, and also to learn more specifically how it is interacting with CDK4 and CDK6.

Source: Eurekalert
Advertisement

Advertisement
News A-Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Advertisement
News Category
What's New on Medindia
Turmeric: Magic Ingredient to Keep you Healthy in Winter
Top 7 Benefits of Good Oral Hygiene
Healthy and Safer Thanksgiving 2021
View all

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Cancer and Homeopathy Parkinsons Disease Surgical Treatment Cancer Facts Cancer Tattoos A Body Art Common Lifestyle Habits that Cause Diseases Health Benefits of Dandelion Plant Immune Checkpoint Inhibitors for Cancer Treatment Non-Communicable Diseases 

Recommended Reading
Researchers Find New Ways to Kill Cancer Cells With Caffeine
Researchers at University of Alberta have identified new ways through which they can utilize ......
Cancer Cell Differentiation Just Got Easier
Introduction of new 'chemical shift' techniques to MRI may help differentiate clear cell renal ......
Scientists Discover Cancer Cells' Achilles' Heel
Scientists have identified why a particular cancer drug is so effective at killing cells....
Scientists Develop Radioactive Bacteria to Attack Cancer Cells
A new radioactive bacteria is being developed by scientists that could help treat patients who are ....
Common Lifestyle Habits that Cause Diseases
Cigarette smoking, unhealthy diets, overuse of alcohol, and physical inactivity are some of the most...
Health Benefits of Dandelion Plant
What is dandelion? Dandelion greens are nutrition powerhouses with a wide range of health benefits. ...
Immune Checkpoint Inhibitors for Cancer Treatment
Immune checkpoint inhibitors are promising drugs to treat a variety of cancers and the FDA has appro...
Non-Communicable Diseases
Non-Communicable Diseases (NCDs) are a group of chronic non-infectious diseases which include Cardio...
Tattoos A Body Art
Tattoos are a rage among college students who sport it for the ‘cool dude’ or ‘cool babe’ look...

Disclaimer - All information and content on this site are for information and educational purposes only. The information should not be used for either diagnosis or treatment or both for any health related problem or disease. Always seek the advice of a qualified physician for medical diagnosis and treatment. Full Disclaimer

© All Rights Reserved 1997 - 2021

This site uses cookies to deliver our services. By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use