Medindia LOGIN REGISTER
Medindia

How to Cope With Stress in a Changing World

by Kathy Jones on Dec 19 2013 8:00 PM

 How to Cope With Stress in a Changing World
We are all familiar with that heart-pounding, race-against-time feeling of stress be it at the workplace or at home.
But this is a very modern perspective on stress. As far as physiologists are concerned, stress is a well-known factor that has driven evolution and moulded the planet's ecosystems since life began. 'Stress is a hot topic', says Shireen Davies, from the University of Glasgow, UK, one of the editors of this collection of reviews, adding that the relevance of stress at a strategic level is becoming more apparent, with global concerns about climate change and food security high on the political agenda.

Explaining that responses to stress can be studied at almost every biological level, from the molecular mechanisms of cellular stress responses to stress in entire populations, Davies explains that she defines stress as the loss of homeostasis – an organism's ability to maintain a stable internal environment.Given the pressing nature of the environmental changes that we are currently experiencing and the ubiquitous nature of stress, Davies joined with two of The Journal of Experimental Biology's Editors, Julian Dow from the University of Glasgow, UK, and Ken Lukowiak from the University of Calgary, Canada, to collate one of the most comprehensive collections of reviews dedicated to the topic to date, which is published in The Journal of Experimental Biology on 18 December 2013 at jeb.biologists.org/content/217/1.toc.

Bringing together specialists from disparate fields, Davies, Dow and Lukowiak present reviews covering stress in organisms ranging from yeast and plants to fish, birds and mammals, encompassing the molecular mechanisms that drive cellular responses to stress through to the epigenetic factors that regulate stress responses across generations.The collection features the following review papers:Molecular basis of chill resistance adaptations in poikilothermic animals, by S.A. L. Hayward et al.Acclimation and thermal tolerance in Antarctic marine ectotherms, by L. S, Peck et al.What is environmental stress? Insights from fish living in a variable environment, by P. M. SchulteMosaic physiology from developmental noise: within-organism physiological diversity as an alternative to phenotypic plasticity and phenotypic flexibility, by H.A. Woods,What can an ecophysiological approach tell us about the physiological responses of marine invertebrates to hypoxia? by J.I. SpicerOrganismal stress, telomeres and life histories, by P. MonaghanThe role of gibberellin signalling in plant responses to abiotic stress, byE.H.Colebrook et al.Environmentally relevant stressors alter memory formation in the pond snail Lymnaea, by K. Lukowiak et al.Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods, by N.M. Teets and D.L. DenlingerNeurobiological disease etiology and inheritance: an epigenetic perspective, by B.J. Saab,and I.M. MansuyNeuromodulators, stress and plasticity: a role for endocannabinoid signalling, by L. Senst and J.BainsPromoting longevity by maintaining metabolic and proliferative homeostasis, byL. Wang, et al.Cell signalling mechanisms for insect stress tolerance, by S. A. Davies et al.Transcellular chaperone signaling: an organismal strategy for integrated cell stress responses, by P. van Oosten-Hawle and R.I. MorimotoThe mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease, By V. Jovaisaite et al.Stress adaptation in a pathogenic fungus, by A.J. P. Brown et al.



Source-Eurekalert


Advertisement