About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

How Cells Go Out of Control and Change into Cancer Cells

by Reshma Anand on January 21, 2016 at 4:35 PM
Font : A-A+

 How Cells Go Out of Control and Change into Cancer Cells

Due to a certain mechanism, normal cells turn into abnormal cells that slowly progresses into cancer cells. In a study involving the fruit fly equivalent of an oncogene implicated in many human leukemias, Northwestern University researchers have gained insight into how developing cells normally switch to a restricted, or specialized state and how that process might go wrong in cancer.

The fruit fly's eye is an intricate pattern of many different specialized cells, such as light-sensing neurons and cone cells. Because flies share with humans many of the same cancer-causing genes, scientists use the precisely made compound eye of Drosophila melanogaster (the common fruit fly) as a workhorse to study what goes wrong in human cancer.

Advertisement


A multidisciplinary team co-led by biologist Richard W. Carthew and engineer Luís A.N. Amaral studied normal cell behavior in the developing eye. The researchers were surprised to discover that the levels of an important protein called Yan start fluctuating wildly when the cell is switching from a more primitive, stem-like state to a more specialized state. If the levels don't or can't fluctuate, the cell doesn't switch and move forward.

"This mad fluctuation, or noise, happens at the time of cell transition. For the first time, we see there is a brief time period as the developing cell goes from point A to point B. The noise is a state of 'in between' and is important for cells to switch to a more specialized state. This limbo might be where normal cells take a cancerous path," said Carthew, professor of molecular biosciences in Northwestern's Weinberg College of Arts and Sciences.
Advertisement

The researchers also found that a molecular signal received by a cell receptor called EGFR is important for turning the noise off. If that signal is not received, the cell remains in an uncontrolled state.

By pinpointing this noise and its "off" switch as important points in the normal process of cell differentiation, the Northwestern researchers provide targets for scientists studying how cells can go out of control and transform into cancer cells.

The study was published as the cover story by the online life sciences and biomedicine journal eLife.

The "noisy" protein the Northwestern researchers studied is called Yan in the fly and Tel-1 in humans. (The protein is a transcription factor.) The Tel-1 protein instructs cells to turn into white blood cells; the gene that produces the protein, oncogene Tel-1, is frequently mutated in leukemia.

The EGFR protein that turns off the noise in flies is called Her-2 in humans. Her-2 is an oncogene that plays an important role in human breast cancer.

"On the surface, flies and humans are very different, but we share a remarkable amount of infrastructure," Carthew said. "We can use fruit fly genetics to understand how humans work and how things go wrong in cancer and other diseases."

Fruit fly cells are small and closely packed together, making study of them challenging. Carthew and Amaral's team of biologists, chemical and biological engineers, computer scientists and chemists together figured out how to identify and analyze thousands and thousands of individual cells in the flies' eyes.

"In the past, people have built models of regulatory networks that control cell differentiation mostly by genetically perturbing one or two components of the network at a time and then compiling those results into models," said Amaral, professor of chemical and biological engineering at the McCormick School of Engineering. "We instead measured the retina as it developed and found the unexpected behavior of the key regulatory factors Yan and EGFR."

Nicolás Peláez, first author of the study and a Ph.D. candidate in interdisciplinary biological sciences working with Amaral and Carthew, built new tools to study this strange feature of noise in developing flies. His methods enabled the researchers to easily measure both the concentration of the Yan protein and its fluctuation (noise).

It takes 15 to 20 hours for a fruit fly cell to go from being an unrestricted cell to a restricted cell, Carthew said. Peláez determined the Yan protein is noisy, or fluctuating, for six to eight of those hours.

"Studying the dynamics of molecules regulating fly-eye patterning can inform us about human disease. Using model organisms such as fruit flies will help us understand quantitatively the basic biological principles governing differentiation in complex animals," Peláez said.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Cancer News

How Do Neutrophils Impact Pancreatic Cancer Treatment Resistance?
A nanoengineering platform targets neutrophils, the white blood cells without killing pancreatic cancer cells paving the way for effective treatments.
Lung Cancer: The Survival Advantage of Lobectomy Over Wedge Resection
The survival rates between lobectomy and wedge resection surgical procedures were found to be the same among lung cancer patients.
Could TKI Cancer Drugs Lead to Inflammatory Side Effects?
The mechanism by which the kinases cause inflammation has been discovered by scientists.
Are Biomarkers the Key to Identifying Early Pancreatic Risk?
Pancreatic cancer cases are on the rise. The biomarker approach could reduce the chance of developing pancreatic cancer.
How Do New Drugs Work Together to Reduce Lung Tumors?
New combination of medications trametinib and entinostat were found to decrease lung cancer in mice.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

How Cells Go Out of Control and Change into Cancer Cells Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests