About Careers MedBlog Contact us

Global Warming may Limit Dengue Fever Spread

by Colleen Fleiss on July 24, 2021 at 12:12 PM
Font : A-A+

Global Warming may Limit Dengue Fever Spread

Dengue virus makes mosquitoes more sensitive to warmer temperatures, stated new research led by Penn State researchers.

The team also found that infection with the bacterium Wolbachia, which has recently been used to control viral infections in mosquitoes, also increases the thermal sensitivity of the insects. The findings suggest that global warming could limit the spread of dengue fever but could also limit the effectiveness of Wolbachia as a biological control agent.


"Dengue fever, a potentially lethal disease for which no treatment exists, is caused by a virus, spread by the bite of the mosquito Aedes aegypti. This mosquito is also responsible for transmitting a number of disease-causing viruses, including Zika, chikungunya and yellow fever," said Elizabeth McGraw, professor and head of the Department of Biology, Penn State. "Aided by increasing urbanization and climate change, this mosquito's range is expected to overlap with 50% of the world's population by 2050, dramatically increasing the number of people who could potentially be exposed to these viruses."

In recent years, research groups around the world have attempted to control these viruses by infecting Ae. aegypti with the bacterium Wolbachia pipientis and then releasing the mosquitoes into the environment, McGraw explained.

"Wolbachia have been shown to prevent viruses, including dengue, from replicating inside mosquitoes," she said. "Importantly, Wolbachia are passed down to the mosquitoes' offspring, making them a self-propagating and lower-maintenance approach to disease control in the field."

McGraw noted that both dengue virus and Wolbachia infect a variety of tissues throughout a mosquito's body, and although they are not toxic, they do evoke an immune stress response.

"Since mosquitoes that are infected with dengue virus and/or Wolbachia are already suffering a stress response, we thought that they would be less well equipped to deal with an additional stressor, such as heat," she said.

To investigate the effects of heat on dengue and Wolbachia-infected mosquitoes, the team placed infected mosquitoes in sealed vials and then submerged the vials into a water bath heated to 42°C -- a realistic temperature extreme that a mosquito might encounter in the wild. The researchers then measured how long it took for the mosquitoes to become immobilized and compared the time to uninfected control mosquitoes. Their findings appear today (July 22) in the journal PLOS Neglected Tropical Diseases.

"After a lot of trial and error, we were successfully able to adapt a heat-based physiological assay commonly used in Drosophila [a model fruit fly species] to our mosquito species to examine the impact of both dengue virus and Wolbachia infections on thermal sensitivity," said Fhallon Ware-Gilmore, graduate student in the Department of Entomology and Center for infectious Disease Dynamics at Penn State who led the project.

The team found that mosquitoes infected with dengue virus showed greater sensitivity to heat; they became immobilized almost three times faster than uninfected mosquitoes when placed in the hot water bath. Similarly, mosquitoes infected with Wolbachia became immobilized four times faster than uninfected mosquitoes.

Interestingly, Ware-Gilmore said, the two agents -- dengue virus and Wolbachia bacteria -- did not have an additive effect on mosquito thermal tolerance.

"You might expect that mosquitoes infected with both dengue virus and Wolbachia might become immobilized even faster than mosquitoes infected with only one or the other microbe, but we did not find an additive effect," she said. "We are, however, the first to show that viral infection can affect mosquito thermal tolerance, specifically by reducing mosquito survival during exposure to high heat. And, while there are some known interactions between heat and Wolbachia, particularly in immature stages, this is also the first study to show that adult infected-mosquitoes have reduced survival during heat stress."

Ware-Gilmore noted that future climate models point to increasing frequencies of extreme temperature events, making short exposures to high temperatures a threat to the survival of dengue and Wolbachia infected mosquitoes.

Source: Eurekalert

News A-Z
What's New on Medindia
Test Your Knowledge on Kidney
World Disability Day 2022 - The Role of Innovative Transformation
Diet and Oral Health: The Sugary Connection May Become Sour
View all
Recommended Reading
News Archive
News Category

Medindia Newsletters Subscribe to our Free Newsletters!
Terms & Conditions and Privacy Policy.

More News on:
Dengue Fever Dengue / Dengue Hemorrhagic Fever Mosquito Diseases Dengue and Homeopathy Chikungunya and Homeopathy Febrile Fits / Febrile Convulsions Chikungunya Dengue Health Effects of Global Warming Q Fever 

Most Popular on Medindia

Accident and Trauma Care A-Z Drug Brands in India How to Reduce School Bag Weight - Simple Tips Find a Hospital Post-Nasal Drip Pregnancy Confirmation Calculator Sanatogen Vent Forte (Theophylline) Diaphragmatic Hernia Selfie Addiction Calculator
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close

Global Warming may Limit Dengue Fever Spread Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests