About Careers MedBlog Contact us
Medindia LOGIN REGISTER
Advertisement

Common Gene Mutation in ALS Causes Damage in Brain

by Himabindu Venkatakrishnan on December 19, 2014 at 11:13 AM
Font : A-A+

 Common Gene Mutation in ALS Causes Damage in Brain

A common gene mutation in Amyotrophic lateral sclerosis generates a deadly protein that may cause the damage in the brain that leads to the condition, reveals a new study published online on Thursday (December 17th) in the Cell Press journal Neuron. Researchers look to understand the causes of amyotrophic lateral sclerosis (ALS), in the hope of finding new ways to treat the disease.

About 5 percent of ALS patients carry an altered version of a gene called C9orf72, which in ALS patients contains hundreds of repeat sequences that otherwise are not present in normal individuals. Since the gene's discovery in 2011, however, researchers have been trying to understand its normal function as well as its role in ALS, with multiple hypotheses proposed.

Advertisement

Senior author Davide Trotti, Ph.D., co-director of the Weinberg Unit for ALS research at Thomas Jefferson University explored three leading hypotheses. The first idea, that the C9orf72 mutation in ALS disrupts the gene's normal function in the cell did not hold up. When the researchers knocked down expression of the gene, reducing how much of the protein was made, neurons continued to behave normally, suggestion that the C9orf72 gene is not essential to neuronal health.

The other possibility was that the repeat sequences contained in this gene generate a product - either RNA or protein - that is toxic to the cell. The RNA transcribed from the C9orf72 gene is folded into an unusual shape called a G-quartet, resembling a stack of plates, which may have interfered with normal cell functions. A third option was that it was that the proteins aberrantly generated from this large repeat sequences in the C9orf72 gene of ALS patients were somehow toxic to neurons.
Advertisement

Dr. Trotti and colleagues generated synthetic version of the RNA G-quartets and inserted them into healthy cells that did not contain the C9orf72 mutation. Neurons that had longer versions of the quartets (more plates in the stack) had two times greater chance of dying than those with fewer G-quartets, suggesting that this mechanism might play a role.

However, the most compelling evidence came when Dr. Trotti and colleagues tested the proteins created from the C9orf72 RNA. Although five distinct proteins could be generated from the same RNA sequence, the researchers found that one of the five caused the greatest amount of damage to the cell. The protein chain made from repeats of the amino acids proline (P) and arginine (R), called a poly-PR chain, accumulated in the nucleolus and very rapidly killed the neuron that produced it.

By tracking the fate of a living neuron in real-time, the researchers could see that as more PR protein accumulated in the nucleolus, the cell became more bloated and then suddenly died. The reaction was rapid, occurring within 72 hours.

To test whether the processes observed in cells held true in humans, the researchers tested iPS cells derived motor neurons from ALS patients who had the C9orf72A mutation for the chains of PR protein. Indeed, the motor neurons harbored the toxic PR protein. In addition when both the RNA chains and the PR proteins were active in the cell, researchers observed a synergistic effect, suggesting both mechanisms may be involved in causing the damage to motor neurons.

"These studies suggest that if we could prevent the formation of PR aggregates or promote breaking them up, we could help prevent the motor neuron damage that causes the symptoms we see in ALS patients," says Dr. Trotti.

Source: Eurekalert
Advertisement

Advertisement
Advertisement

Recommended Reading

Latest Research News

 Blind People Feel Their Heartbeat Better Than Those With Sight
Brain plasticity following blindness leads to superior ability in sensing signals from the heart, which has implications for bodily awareness and emotional processing.
New Biomarkers Help Detect Alzheimer's Disease Early
A group of scientists were awarded £1.3 million to create a new “point of care testing” kit that detects Alzheimer's disease biomarkers.
Bone Health and Dementia: Establishing a Link
Is there a connection between Osteoporosis and dementia? Yes, loss in bone density may be linked to an increased risk of dementia in older age.
Is Telomere Shortening a Sign of Cellular Aging?
Link between chromosome length and biological aging marker discovered. The finding helps explain why people with longer telomeres have a lower dementia risk.
Why Is Integrated Structural Biology Important for Cystic Fibrosis?
Integrated structural biology helps discover how the cystic fibrosis transmembrane conductance regulator (CFTR) works.
View All
This site uses cookies to deliver our services.By using our site, you acknowledge that you have read and understand our Cookie Policy, Privacy Policy, and our Terms of Use  Ok, Got it. Close
×

Common Gene Mutation in ALS Causes Damage in Brain Personalised Printable Document (PDF)

Please complete this form and we'll send you a personalised information that is requested

You may use this for your own reference or forward it to your friends.

Please use the information prudently. If you are not a medical doctor please remember to consult your healthcare provider as this information is not a substitute for professional advice.

Name *

Email Address *

Country *

Areas of Interests